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B Proof Appendix

In this proof appendix, we first prove two intermediate results that (i) describe the stationary distri-
bution for a finite S (Lemma 1), and, (ii) describe the limit of the steady-state value of the wage w
and the entry/exit threshold s∗ when S goes to infinity (Lemma 2). This is given in Appendix B.1. We
then prove Proposition 1, giving the value and policy functions of an incumbent firm at the steady-
state, in Appendix B.2. We then prove Corollary 2 giving the stationary distribution when S → ∞.
In Appendix B.4, we prove Proposition 2, giving the ergodic behavior of the firm productivity distri-
bution for the case without entry and exit. In Appendix B.5, we state and prove a general theorem
that extends Theorem 2 to the case with entry and exit. We then prove Proposition 3. We then find
the asymptotic value of the ratio between the number of incumbents and the number of potential
entrants, when the former goes to infinity (Appendix B.7). This intermediate result will be used in
the the proof of Propositions 4 and 5 in Appendix B.8. Finally, we prove Proposition 6 that solve for
the value and policy function under Assumption 3. This last proof involves two intermediate results,
Lemma 3 and 4.

B.1 Preliminary Results

Lemma 1 For a given S, if (i) the entrant distribution is Pareto (i.e Gs = Ke (ϕ
s)−δe) and (ii) the

productivity process follows Gibrat’s law (Assumption 1) with parameters a and c on the grid defined
by ϕ, then the stationary distribution (i.e when Vartǫt+1 = 0) is:
For s∗ ≤ s ≤ S:

µs = P{ϕ = ϕs} =MKeC1

(
ϕs

ϕs∗

)−δ

+MKeC2 (ϕ
s)−δe +MKeC3

and µs∗−1 = a
(
µs∗ +MKe

(
ϕs∗
)−δe

)
and µs = 0 for s < s∗ − 1.

Where δ = log(a/c)
log(ϕ) and C1, C2, C3 are constants, independent of s, and where

C1 =
c(a(ϕ−δe )S+2−a(ϕ−δe )s

∗−c(ϕ−δe)S+3+c(ϕ−δe )s
∗

)
a(1−ϕ−δe )(a−c)(aϕ−δe−c) , C2 =

(a(ϕ−δe )2+bϕ−δe+c)
(a(ϕ−δe )2−ϕ−δe (a+c)+c) and C3 =

−(ϕ−δe)S+1

(1−ϕ−δe )(a−c) .

Proof: To find the stationary distribution of the Markovian process described by the transition matrix
P , we need to solve for µ in µ = (P ∗

t )
′(µ+MG) where P is given by assumption 1 and where µ is the

(S × 1) vector (µ1, . . . , µS)′. For simplicity, we assume M = 1.

The matrix equation µ = (P ∗
t )

′(µ + MG) can be equivalently written as the following system of
equations:

For s < s∗ − 1:
µs = 0 (20)

For s = s∗ − 1:
µs∗−1 = a(µs∗ +Gs∗) (21)

For s = s∗:
µs∗ = b(µs∗ +Gs∗) + a(µs∗+1 +Gs∗+1) (22)

For s = S:
µS = c(µS−1 +GS−1) + (b+ c)(µS +GS) (23)
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For s∗ + 1 ≤ s ≤ S − 1:

µs = c(µs−1 +Gs−1) + b(µs +Gs) + a(µs+1 +Gs+1) (24)

The system of Equations 22, 23 and 24 gives a linear second order difference equation with two
boundary conditions. The system has a exogenous term given by the distribution of entrants G. For
this system, we define the associated homogeneous system by the same equations with Gs = 0,∀s.
To solve for a linear second order difference equation, we follow four steps: (i) Solve for the general
solution of the homogeneous system; these solutions are parametrized by two constants (ii) Find
one particular solution for the full system (iii) The general solution of the full system is then given
by the sum of the general solution of the homogeneous system and the particular solution we have
found (iv) Solve for the undetermined coefficient using the boundary conditions.

The recurrence equation of the homogeneous system is equivalent to cµs−1 − (a+ c)µs + aµs+1 = 0
since b = 1 − a − c. To find the general solution of this equation, let us solve for the root of the
polynomial aX2 − (a+ c)X + c. This polynomial is equal to a(X − c/a)(X − 1) and thus its roots are
r1 = c/a and 1. The general solution of the homogeneous system associated to Equation 24 is then
µs = A(c/a)s +B where A and B are constants.

Using the form of the entrant distributionGs = Ke(ϕ
−δe)s, and assuming that ϕ−δe 6= a

c , a particular

solution is Ke
a(ϕ−δe )2+bϕ−δe+c

a(ϕ−δe )2−(a+c)ϕ−δe+c(ϕ
−δe)s.

The general solution of the second order linear difference equation is then

A(c/a)s +B +Ke
a(ϕ−δe)2 + bϕ−δe + c

a(ϕ−δe)2 − (a+ c)ϕ−δe + c
(ϕ−δe)s

By substituting this general solution in the boundary condition 22 and 23, we find

A = Ke

( c
a

)−s∗ c
(
a(ϕ−δe)S+2 − a(ϕ−δe)s

∗ − c(ϕ−δe)S+3 + c(ϕ−δe)s
∗
)

a(1− ϕ−δe)(a− c)(aϕ−δe − c)
and B = Ke

−(ϕ−δe)S+1

(1− ϕ−δe)(a− c)

Since the sth productivity level is ϕs, then s = logϕs

logϕ and thus
(
c
a

)s
= (ϕs)−

log a/c

log ϕ . Let us define δ =
log a/c
logϕ . The expression of the stationary distribution is then:

µs = KeC1

(
ϕs

ϕs∗

)−δ

+KeC2 (ϕ
s)−δe +KeC3 (25)

for s∗ ≤ s ≤ S. The value of µs∗−1 is given by 21 and ∀s < s∗ − 1, µs = 0. �

Lemma 2 The limits s∗ andw of s∗ andw when S goes to infinity satisfyw =
(
α

1

1−αA∞
) 1−α

γ(1−α)+1

where

A

M
−→
S→∞

A∞ := a(ϕs∗−1)
1

1−α

(
(ϕδe − 1)C∞

1 + (ϕδe − 1)(C2 + 1)
(
ϕs∗

)−δe
)

+ (ϕδe − 1)C∞
1

(
ϕ

1
1−α

)s∗

1− ϕ
−δ+ 1

1−α

+ (ϕδe − 1)C2

(
ϕ
−δe+

1
1−α

)s∗

1− ϕ
−δe+

1
1−α

and C2 =
(a(ϕ−δe )2+bϕ−δe+c)

(a(ϕ−δe )2−ϕ−δe(a+c)+c) , as defined in Lemma 1 and C∞
1 = c

a
(ϕ−δe )s

∗

(1−ϕ−δe )(c−aϕ−δe )
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Proof: To show this lemma, let us first note that w =
(
α

1

1−α A
M

) 1−α

γ(1−α)+1

and let us take the limit of A
M

when S goes to infinity. For a given S, let us look at the expression of A:

A =
S∑

s=1

(ϕs)
1

1−α µs

=(ϕs∗−1)
1

1−α µs∗−1 +

S∑

s=s∗

(ϕs)
1

1−α µs

=(ϕs∗−1)
1

1−α a

(
MKeC1 +MKeC2

(
ϕs∗
)−δe

+MKeC3 +MKe(ϕ
s∗)−δe

)

+

S∑

s=s∗

(ϕs)
1

1−α

(
MKeC1

(
ϕs

ϕs∗

)−δ

+MKeC2 (ϕ
s)−δe +MKeC3

)

By dividing both sides byM , we get

A

M
=a(ϕs∗−1)

1
1−α

(
KeC1 +KeC2

(
ϕs∗
)−δe

+KeC3 +Ke(ϕ
s∗)−δe

)

+KeC1

(
ϕs∗
)δ S∑

s=s∗

(
ϕ−δ+ 1

1−α

)s
+KeC2

S∑

s=s∗

(
ϕ−δe+

1
1−α

)s
+KeC3

S∑

s=s∗

(ϕ
1

1−α )s

=a(ϕs∗−1)
1

1−α

(
KeC1 +KeC2

(
ϕs∗
)−δe

+KeC3 +Ke(ϕ
s∗)−δe

)

+KeC1

(
ϕs∗
)δ
(
ϕ−δ+ 1

1−α

)s∗
−
(
ϕ−δ+ 1

1−α

)S+1

1− ϕ−δ+ 1
1−α

+KeC2

(
ϕ−δe+

1
1−α

)s∗
−
(
ϕ−δe+

1
1−α

)S+1

1− ϕ−δe+
1

1−α

+KeC3
(ϕ

1
1−α )s

∗ − (ϕ
1

1−α )S+1

1− ϕ
1

1−α

Since ϕ > 1, δ(1 − α) > 1 and δe(1 − α) > 1, we have that − δe
δ + 1

δ(1−α) < 0 and −1 + 1
δ(1−α) < 0. This

implies that both
(
ϕ−δ+ 1

1−α

)S
and

(
ϕ−δe+

1

1−α

)S
converge to zero when S goes to infinity. We also

have that

C3(ϕ
1

1−α )S =
−(ϕ−δe)S+1

(1− ϕ−δe)(a− c)
(ϕ

1
1−α )S =

−ϕ−δe(ϕ−δe+
1

1−α )S

(1− ϕ−δe)(a− c)
−→
S→∞

0

Putting these results together yields

A

M
−→
S→∞

A∞ := a(ϕs∗−1)
1

1−α

(
(ϕδe − 1)C∞

1 + (ϕδe − 1)(C2 + 1)
(
ϕs∗
)−δe

)

+ (ϕδe − 1)C∞
1

(
ϕ

1
1−α

)s∗

1− ϕ−δ+ 1
1−α

+ (ϕδe − 1)C2

(
ϕ−δe+

1
1−α

)s∗

1− ϕ−δe+
1

1−α

�

B.2 Proof of Proposition 1

In this section we prove Proposition 1. We first solve for the value and the policy function for the
general case of a finite S and then present the simpler special case - given in the main text - when S
goes to infinity.
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Instantaneous profit: It is easy to show that instantaneous profit is equal to

π∗(µ,ϕs) = (ϕs)
1

1−α

(α
w

) α

1−α

(1− α)− cf

Note that this is a function of µ through the equilibrium wage w. In the stationary equilibrium this
wage is fixed. In the following we will drop the notation µ whenever no confusion arises from this.

Bellman equation: In the stationary equilibrium, the Bellman equation is given by

Vs = (ϕs)
1

1−α

(α
w

) α

1−α

(1− α)− cf + βmax {0, aVs−1 + bVs + cVs+1}

where Vs = V (µ,ϕs). The policy function of this problem follows a threshold rule: there exist a s∗

such that

Vs = (ϕs)
1

1−α

(α
w

) α

1−α

(1− α)− cf + β (aVs−1 + bVs + cVs+1) for s ≥ s∗

Vs = (ϕs)
1

1−α

(α
w

) α

1−α

(1− α)− cf for s ≤ s∗ − 1

For s ≥ s∗: Let us first look at the case when s ≥ s∗. We want to solve for the following second order
linear difference equation:

aVs−1 +

(
1− a− c− 1

β

)
Vs + cVs+1 =

cf
β

− (ϕs)
1

1−α

(α
w

) α

1−α 1− α

β
(26)

which is associated with the homogeneous equation

aVs−1 +

(
1− a− c− 1

β

)
Vs + cVs+1 = 0 (27)

This homogeneous equation is associated with the polynomial cX2 +
(
1− a− c− 1

β

)
X + a which

has discriminant ∆ =
(
1− a− c− 1

β

)2
− 4ca =

(
β−1
β

)2
+ (a − c)2 + 2(a + c)1−β

β > 0. Thus, this

polynomial has two real roots:

r1 =
(a+ c+ 1

β − 1) +
√
∆

2c
and r2 =

(a+ c+ 1
β − 1)−

√
∆

2c

Since a− c+ 1
β − 1 > 0 it is trivial to show that r2 < 1 < r1. The general solution of the homogeneous

Equation 27 is
Vs = K1r

s
1 +K2r

s
2

where K1 and K2 are (for now) undetermined constants.

To find the general solution of the Equation 26, we need to find a particular solution of this equation.
A particular solution of Equation 26 is

Vs = − cf
1− β

+ (ϕs)
1

1−α

(α
w

) α

1−α 1− α

1− ρβ

where ρ = aϕ
−1

1−α + b+ cϕ
1

1−α .

The general solution of Equation 26 takes the following form

V GS
s = K1r

s
1 +K2r

s
2 −

cf
1− β

+ (ϕs)
1

1−α

(α
w

) α

1−α 1− α

1− ρβ
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where K1 and K2 are constants to be solved for. To solve for these constants we use the boundary
conditions.

At s = s∗, the value function of a firms satisfies

aVs∗−1 +

(
1− a− c− 1

β

)
V GS
s∗ + cV GS

s∗+1 =
cf
β

−
(
ϕs∗
) 1

1−α

(α
w

) α

1−α 1− α

β

with Vs∗−1 =
(
ϕs∗−1

) 1

1−α
(
α
w

) α

1−α (1− α)− cf . Note that V GS
s also satisfies

aV GS
s∗−1 +

(
1− a− c− 1

β

)
V GS
s∗ + cV GS

s∗+1 =
cf
β

−
(
ϕs∗
) 1

1−α

(α
w

) α

1−α 1− α

β

It follows that V GS
s∗−1 = Vs∗−1, which yields

K1r
s∗−1
1 +K2r

s∗−1
2 − cf

1− β
+
(
ϕs∗−1

) 1

1−α

(α
w

) α

1−α 1− α

1− ρβ
=
(
ϕs∗−1

) 1

1−α

(α
w

) α

1−α

(1− α)− cf

After rearranging terms we get

K1r
s∗−1
1 +K2r

s∗−1
2 = β

cf
1− β

− βρ
(
ϕs∗−1

) 1

1−α

(α
w

) α

1−α 1− α

1− ρβ
(28)

At s = S, the value function at level ϕS , VS , satisfies

aV GS
S−1 + (1− a− c+ c)VS =

1

β
VS +

cf
β

− 1− α

β

(α
w

) α

1−α
(
ϕ

1

1−α

)S

Solving for VS yields

VS =
1

1− 1
β − a

(
cf
β

− 1− α

β

(α
w

) α

1−α
(
ϕ

1

1−α

)S
− aV GS

S−1

)

which implies

VS =
1

1− 1
β
− a

(
cf
β

− 1− α

β

(α
w

) α
1−α

(
ϕ

1
1−α

)S
− a(K1r

S−1
1 +K2r

S−1
2 ) + a

cf
1− β

− a
(
ϕS−1

) 1
1−α

(α
w

) α
1−α 1− α

1− ρβ

)

VS =
1

1− 1
β
− a

(
cf

(
1

β
+ a

1

1− β

)
− (1− α)

(α
w

) α
1−α

(
ϕ

1
1−α

)S
(

1

β
+ a

ϕ
−1
1−α

1− βρ

)
− a(K1r

S−1
1 +K2r

S−1
2 )

)

VS =
1

1− 1
β
− a

(
cf

(
1
β
− 1 + a

1− β

)
− (1− α)

(α
w

) α
1−α

(
ϕ

1
1−α

)S
(

1

β
+ a

ϕ
−1
1−α

1− βρ

)
− a(K1r

S−1
1 +K2r

S−1
2 )

)

VS =
1

1− 1
β
− a


cf

(
1
β
− 1 + a

1− β

)
− (1− α)

(α
w

) α
1−α

(
ϕ

1
1−α

)S



1
β
− ρ+ aϕ

−1
1−α

1− βρ


− a(K1r

S−1
1 +K2r

S−1
2 )




VS =
−cf
1− β

− 1− α

1− βρ

(α
w

) α
1−α

(
ϕ

1
1−α

)S



1
β
− ρ+ aϕ

−1
1−α

1− 1
β
− a


− a(K1r

S−1
1 +K2r

S−1
2 )

At s = S − 1, we have

aV GS
S−2 +

(
1− a− c− 1

β

)
V GS
S−1 + cVS =

cf
β

−
(
ϕS−1

) 1

1−α

(α
w

) α

1−α 1− α

β
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but, at the same time

aV GS
S−2 +

(
1− a− c− 1

β

)
V GS
S−1 + cV GS

S =
cf
β

−
(
ϕS−1

) 1

1−α

(α
w

) α

1−α 1− α

β

it follows that VS = V GS
S and thus

−cf

1− β
− 1− α

1− βρ

( α

w

) α
1−α

(
ϕ

1
1−α

)S



1
β
− ρ+ aϕ

−1
1−α

1− 1
β
− a


− a(K1r

S−1
1 +K2r

S−1
2 ) = K1r

S
1 +K2r

S
2 − cf

1− β
+
(
ϕS
) 1

1−α
( α

w

) α
1−α 1− α

1− ρβ

⇔

− 1− α

1− βρ

( α

w

) α
1−α

(
ϕ

1
1−α

)S



1
β
− ρ+ aϕ

−1
1−α

1− 1
β
− a


−

(
ϕS
) 1

1−α
( α

w

) α
1−α 1− α

1− ρβ
= K1r

S
1 +K2r

S
2 + a(K1r

S−1
1 +K2r

S−1
2 )

⇔

(1 + ar−1
1 )K1r

S
1 + (1 + ar−1

2 )K2r
S
2 = − 1− α

1− βρ

( α

w

) α
1−α

(
ϕ

1
1−α

)S



1
β
− ρ+ aϕ

−1
1−α

1− 1
β
− a

+ 1




which yields

(1 + ar−1
1 )K1r

S
1 + (1 + ar−1

2 )K2r
S
2 = − 1− α

1− βρ

(α
w

) α

1−α
(
ϕ

1

1−α

)S
(
a(ϕ

−1

1−α − 1) + 1− ρ

1− 1
β − a

)
(29)

Solving for K1 and K2: Equations 28 and 29 form a system of two equations in two unknowns.
Solving this system givesK1 andK2 and thus the full solution of the incumbent’s value function over
the state space Φ. Let us rewrite the system of Equations 28 and 29 as

K1r
s∗−1
1 +K2r

s∗−1
2 = A− βρ

(
ϕs∗−1

) 1

1−α B

(1 + ar−1
1 )K1r

S
1 + (1 + ar−1

2 )K2r
S
2 = −κ

(
ϕ

1

1−α

)S
B

where A = β cf
1−β ,B =

(
α
w

) α

1−α 1−α
1−ρβ and κ = a(ϕ

−1
1−α −1)+1−ρ
1− 1

β
−a

. It is obvious to show that

K1(s
∗) =

(1 + ar−1
2 )rS−s∗+1

2

(
A− βρ

(
ϕs∗−1

) 1

1−α B
)
+ κ

(
ϕ

1

1−α

)S
B

(1 + ar−1
2 )rS−s∗+1

2 rs
∗−1

1 − (1 + ar−1
1 )rS1

K2(s
∗) =

(1 + ar−1
1 )rS−s∗+1

1

(
A− βρ

(
ϕs∗−1

) 1

1−α B
)
+ κ

(
ϕ

1

1−α

)S
B

(1 + ar−1
1 )rS−s∗+1

1 rs
∗−1

2 − (1 + ar−1
2 )rS2

or, after substituting the expression for A,B and κ,

K1(s
∗, w) =

(1 + ar−1
2 )rS−s∗+1

2

(
β

cf
1−β

− βρ
(
ϕs∗−1

) 1
1−α ( α

w

) α
1−α 1−α

1−ρβ

)
+ a(ϕ

−1
1−α −1)+1−ρ

1− 1
β
−a

(
ϕ

1
1−α

)S (
α
w

) α
1−α 1−α

1−ρβ

(1 + ar−1
2 )rS−s∗+1

2 rs
∗−1

1 − (1 + ar−1
1 )rS1

K2(s
∗, w) =

(1 + ar−1
1 )rS−s∗+1

1

(
β

cf
1−β

− βρ
(
ϕs∗−1

) 1
1−α ( α

w

) α
1−α 1−α

1−ρβ

)
+ a(ϕ

−1
1−α −1)+1−ρ

1− 1
β
−a

(
ϕ

1
1−α

)S (
α
w

) α
1−α 1−α

1−ρβ

(1 + ar−1
1 )rS−s∗+1

1 rs
∗−1

2 − (1 + ar−1
2 )rS2
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Note that both K1 and K2 are also function of the wage and the threshold s∗. It follows that the
unique solution of the Bellman equation is

Vs =

{
K1(s

∗, w)rs1 +K2(s
∗, w)rs2 − cf

1−β + (ϕs)
1

1−α

(
α
w

) α

1−α 1−α
1−ρβ for s ≥ s∗

(ϕs)
1

1−α

(
α
w

) α

1−α (1− α)− cf for s ≤ s∗ − 1

Solving for s∗: Note that by definition s∗ is the smallest integer such that aVs∗−1+ bVs∗ + cVs∗+1 ≥ 0
(i.e that aVs∗−2 + bVs∗−1 + cVs∗ < 0). Note also that

ars−1
1 + brs1 + crs+1

1 =
rs1
β

ars−1
2 + brs2 + crs+1

2 =
rs2
β

a
(
ϕ

1

1−α

)s−1
+ b
(
ϕ

1

1−α

)s
+ c

(
ϕ

1

1−α

)s+1
= ρ

(
ϕ

1

1−α

)s

by definition of r1, r2 and ρ. Using the above equations, it is easy to show that

aVs∗−1 + bVs∗ + cVs∗+1 =
1

β

(
K1(s

∗, w)rs
∗

1 +K2(s
∗, w)rs

∗

2

)
− cf

1− β
+ ρ

(
ϕs∗
) 1

1−α

(α
w

) α

1−α 1− α

1− ρβ

Solving for s̃∗ such that 1
β

(
K1(s̃

∗, w)rs̃
∗

1 +K2(s̃
∗, w)rs̃

∗

2

)
− cf

1−β + ρ
(
ϕs̃∗
) 1

1−α
(
α
w

) α

1−α 1−α
1−ρβ = 0 implies

that s∗ = ⌈s̃∗⌉. This completes the characterization of the solution of the Bellman equation. In order
to obtain a more intuitive expression, we now turn to the special case where S → ∞.

Solution of the Bellman when S → ∞: Since r1 > ϕ
1

1−α > 1 > r2 (we know that ϕ
1

1−α > 1 > r2 and
we have assumed that r1 > ϕ

1

1−α i.e ϕ is small enough), it is easy to show that

K1(s
∗) =

(1 + ar−1
2 )rS−s∗+1

2

(
A− βρ

(
ϕs∗−1

) 1

1−α B
)
+ κ

(
ϕ

1

1−α

)S
B

(1 + ar−1
2 )rS−s∗+1

2 rs
∗−1

1 − (1 + ar−1
1 )rS1

−→
S→∞

0

K2(s
∗) =

(1 + ar−1
1 )rS−s∗+1

1

(
A− βρ

(
ϕs∗−1

) 1

1−α B
)
+ κ

(
ϕ

1

1−α

)S
B

(1 + ar−1
1 )rS−s∗+1

1 rs
∗−1

2 − (1 + ar−1
2 )rS2

−→
S→∞

A− βρ
(
ϕs∗−1

) 1

1−α

B

rs
∗−1

2

It follows that for s ≥ s∗

V S=∞
s =

(
A− βρ

(
ϕs∗−1

) 1

1−α

B

)
rs−s∗+1
2 − cf

1− β
+
(
ϕ

1

1−α

)s (α
w

) α

1−α 1− α

1− ρβ

where A = β cf
1−β and B =

(
α
w

) α

1−α 1−α
1−ρβ and w and s∗ are the limits of, respectively, w and s∗ when S

goes to infinity. After substituting the expression of A and B and rearranging terms, the solution of
the Bellman equation is, for all s:

V S=∞
s =

−cf
1− β

(
1− βr

[s−s∗+1]+

2

)
+

1− α

1− ρβ

(α
w

) α

1−α
(
ϕ

1

1−α

)s

1− ρβ

(
r2

ϕ
1

1−α

)[s−s∗+1]+



where [x]+ = |x|+x
2 = max(x, 0).
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Solving for s∗ when S → ∞: Following the same steps as in the case S < ∞, it is easy to show that,
for s ≥ s∗,

aVs−1 + bVs + cVs+1 =
−cf
1− β

(
1− rs−s∗+1

2

)
+

1− α

1− ρβ

(α
w

) α

1−α
(
ϕ

1

1−α

)s

ρ− ρ

(
r2

ϕ
1

1−α

)[s−s∗+1]+



and thus, for s = s∗,

aVs∗−1 + bVs∗ + cVs∗+1 =
−cf
1− β

(1− r2) +
1− α

1− ρβ

(α
w

) α

1−α
(
ϕ

1

1−α

)s∗
ρ

(
1− r2

ϕ
1

1−α

)

It follows that aVs∗−1 + bVs∗ + cVs∗+1 ≥ 0 is equivalent to

s∗ ≥ (1− α)

log

[
cf (1−r2)(1−ρβ)

ρ(1−β)(1−α)α
α

1−α (1−r2ϕ
−1
1−α )

]

logϕ
+ α

logw

log ϕ

Since s∗ is the smallest integer such that this inequality is satisfied, it follows that

s∗ =



(1− α)

log

[
cf (1−r2)(1−ρβ)

ρ(1−β)(1−α)α
α

1−α (1−r2ϕ
−1
1−α )

]

logϕ
+ α

logw

log ϕ




which complete the proof. �

B.3 Proof of Corollary 2

In this appendix, we prove that the productivity stationary distribution is a mixture of two distribu-
tions: (i) the stationary distribution associated with the Markovian firm-level productivity process
and (ii) the distribution of entrants. These are weighted by the constants K1 and K2, respectively.

Formally, we show that K1 = − c
a

(ϕδe−1)(ϕ−δe )s
∗

(1−ϕ−δe )(aϕ−δe−c) and K2 = (ϕδe−1)(a(ϕ−δe )2+bϕ−δe+c)
a(ϕ−δe )2−ϕ−δe(a+c)+c (ϕs∗)−δe . In the

corollary in the main text, we only reported the value of the stationary productivity distribution for
productivity levels above the entry/exit thresholds. In this appendix, for completeness, we describe
this distribution over the full idiosyncratic state-space. We then show that:

µ̂s =





− c
a

(ϕδe−1)(ϕ−δe )s
∗

(1−ϕ−δe )(aϕ−δe−c)

(
ϕs

ϕs∗

)−δ

+
(ϕδe−1)(a(ϕ−δe )2+bϕ−δe+c)

a(ϕ−δe )2−ϕ−δe (a+c)+c
(ϕs)−δe if s ≥ s∗

a
(
ϕδe − 1

) ( −c/a

(1−ϕ−δe )(aϕ−δe−c)
+ a(ϕ−δe )2+bϕ−δe+c

a(ϕ−δe )2−(a+c)ϕ−δe+c
+ 1
)
(ϕs∗)−δe if i = s∗ − 1

0 if s < s∗ − 1

with δ = log(a/c)
log(ϕ) .

The proof of this corollary builds on the result of Lemma 1 and then takes the limit of this distribution
when the maximum level of productivity goes to infinity.

We first find the limit of constants Ke, C1, C2 and C3 as the number of productivity bins S goes to
infinity. After finding these limits, we take the limit of Equation 25 in the previous lemma.
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Let us first describe the asymptotic behavior of Ke. Recall that the entrant distribution sums to
one.37

1 =

S∑

s=1

Gs = Ke

S∑

s=1

(ϕs)−δe = Ke

S∑

s=1

(
ϕ−δe

)s
= Ke

ϕ−δe −
(
ϕ−δe

)S+1

1− ϕ−δe

Rearranging terms, it follows that

Ke =
1− ϕ−δe

ϕ−δe − (ϕ−δe)S+1

Since ϕ > 1 and δe, δ > 0 we have
(
ϕ−δe

)S −→
S→∞

0 by applying these results to the expression for Ke,

it follows that Ke −→
S→∞

ϕδe − 1. Let us now focus on the asymptotic behavior of C3, C2 and C1. From

Lemma 1, we have C3 =
−(ϕ−δe )S+1

(1−ϕ−δe )(a−c) −→
S→∞

0. We also have that

C2 :=

(
a(ϕ−δe)2 + bϕ−δe + c

)

(a(ϕ−δe)2 − ϕ−δe(a+ c) + c)

which is independent of S.

Finally, we have

C1 =
c
(
a(ϕ−δe)S+2 − a(ϕ−δe)s

∗ − c(ϕ−δe)S+3 + c(ϕ−δe)s
∗

)

a(1− ϕ−δe)(a− c)(aϕ−δe − c)

−→
S→∞

c
(
−a(ϕ−δe)s

∗

+ c(ϕ−δe)s
∗

)

a(1− ϕ−δe)(a− c)(aϕ−δe − c)
=

c

a

−(a− c)(ϕ−δe)s
∗

(1− ϕ−δe)(a− c)(aϕ−δe − c)

and therefore

C1 −→
S→∞

C∞
1 :=

c

a

(ϕ−δe)s
∗

(1− ϕ−δe)(c− aϕ−δe)

We have just found the limit ofKe, C1,C2 andC3 when S goes to infinity. We then apply these results
to the stationary distribution by taking S to infinity. According to Lemma 1, we have for s∗ ≤ s:

µs

M
= KeC1

(
ϕs

ϕs∗

)−δ

+KeC2(ϕ
s)−δe +KeC3

We have just shown that when S goes to infinity, the stationary distribution is given by:

µs

M
=
(
ϕδe − 1

) c

a

(ϕ−δe)s
∗

(1− ϕ−δe)(c− aϕ−δe)

(
ϕs

ϕs∗

)−δ

+
(
ϕδe − 1

) (
a(ϕ−δe)2 + bϕ−δe + c

)

(a(ϕ−δe)2 − ϕ−δe(a+ c) + c)
(ϕs)−δe

�

B.4 Proof of Proposition 2

Proposition 2 claims that for the no entry and exit case and under Assumption 1, the unconditional
mean of µt is given by

E [µs,t] = µs = N
1− ϕ−δ

ϕ−δ(1− (ϕS)−δ)
(ϕs)−δ

where δ = log(a/c)
log(ϕ) . Furthermore, the unconditional variance-covariance matrix of µt is

Var [µt] =

∞∑

k=0

(P ′)k
(

S∑

s=1

µsWs

)
P k

37The way we define the model, we assume that G sums to one. We also assume that the number of potential entrants in
bin s is MGs, so that the total number of potential entrants is M .
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where P is the transition matrix for firm-level productivity, and, Ws = diag(Ps,.) − P
′

s,.Ps,. where
Ps,. denotes the sth-row of the transition matrix P in Assumption 1. Where for 1 < s < S, Ws =(

0 0 0
0 Σ 0
0 0 0

)
with Σ =

(
a(1 − a) −ab −ac
−ab b(1 − b) −bc
−ac −bc c(1− c)

)
, while W1 =

(
Σ(1) 0
0 0

)
with Σ(1) =

(
c(1− c) −c(1− c)
−c(1− c) c(1− c)

)
,

and,WS =
(
0 0
0 Σ(S)

)
with Σ(S) =

(
a(1 − a) −a(1− a)
−a(1 − a) a(1 − a)

)
.

Proof:

Let us define fk,st+1 as the number of firms in state k at t+1 that were in state s at t. Under Assumption

1, it is easy to show that, for 1 < s < S, fk,st+1 = 0 for both k > s + 1 and k < s − 1. Similarly, we have

fk,1t+1 = 0 for k > 2 and fk,St+1 for k < S − 1. It is easy to see that

µ1,t+1 = f1,1t+1 + f1,2t+1 for s = 1

µs,t+1 = f s,s−1
t+1 + f s,st+1 + f s,s+1

t+1 for 1 < s < S

µS,t+1 = fS,S−1
t+1 + fS,St+1 for s = S

As in the proof of Theorem 1, the vector f .,st+1 = (f s−1,s
t+1 , f s,st+1, f

s+1,s
t+1 )′ is distributed according to a

multinomial distribution with number of trials µs,t and probability of events (a, b, c)′. As the number
of firms in productivity state s becomes large, we can approximate this multinomial distribution
with a normal distribution (see Severini 2005, p377 example 12.7). It follows that, for 1 < s < S, we
have:

f .,st+1 =



f s−1,s
t+1
f s,st+1

f s+1,s
t+1


 N

(
µs,t

(a
b
c

)
;µs,tΣ

)
where Σ =

(
a(1− a) −ab −ac
−ab b(1− b) −bc
−ac −bc c(1 − c)

)

Similarly for s = 1, we have

f .,1t+1 =

(
f1,1t+1

f2,1t+1

)
 N

(
µ1,t

(
1− c
c

)
;µ1,tΣ1

)
where Σ1 =

(
c(1− c) −c(1− c)
−c(1− c) c(1 − c)

)

and for s = S, we have

f .,St+1 =

(
fS−1,S
t+1

fS,St+1

)
 N

(
µS,t

(
a

1− a

)
;µS,tΣS

)
where ΣS =

(
a(1− a) −a(1− a)
−a(1− a) a(1− a)

)

It follows that we can rewrite the vector f .,st+1 as

f .,1t+1 = µ1,t

(
1− c
c

)
+

√
µ1,tǫ

.,1
t+1

f .,st+1 = µs,t

(a
b
c

)
+

√
µs,tǫ

.,s
t+1 for 1 < s < S

f .,St+1 = µS,t

(
a

1− a

)
+

√
µS,tǫ

.,S
t+1
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where ǫ.,1t+1  N (0,Σ1), ǫ
.,s
t+1  N (0,Σ) for 1 < s < S, and, ǫ.,St+1  N (0,ΣS). Note that the ǫ.,st+1 are

then independent of the µs,t. Let us introduce some notation that turns out to be useful:

Is ≡




0 0 0
...

...
...

0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
...

...
...

0 0 0




and I1 ≡




1 0
0 1
0 0
...

...
0 0


 and IS ≡




0 0
...

...
0 0
1 0
0 1




where the sth row of Is is (0, 1, 0). With this notation, it is easy to see that

µt =

S∑

s=1

Isf
.,s
t+1

= µ1,tI1

(
1− c
c

)
+

S−1∑

s=2

µs,tIs

(a
b
c

)
+ µS,tIS

(
a

1− a

)
+

S∑

s=1

Is
√
µs,tǫ

.,s
t+1

from which it follows that

µt = P ′µt +
S∑

s=1

(Isǫ
.,s
t+1)(

√
µt

′es) (30)

where P is the transition matrix of the idiosyncratic productivity process in Assumption 1, es is the
sth base vector, and,

√
µt = (

√
µ1,t, . . . ,

√
µs,t, . . . ,

√
µS,t)

′.

Let us call the vector µ = E [µt], the unconditional expectation of the productivity distribution µt.
From Equation 30 it is easy to show that µ satisfies µ = P ′µ. Using a similar approach to the proof of
Corollary 2 and the fact that

∑S
s=1 µs = N , one can show that

µs = E [µs,t] = N
1− ϕ−δ

ϕ−δ(1− (ϕS)−δ)
(ϕs)−δ

To compute the unconditional variance-covariance matrix of µt, let us take the variance of Equation
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30:

Var [µt] =Var

[
P ′µt +

S∑

s=1

(Isǫ
.,s
t+1)(

√
µt

′es)

]

= Cov

[
P ′µt +

S∑

s=1

(Isǫ
.,s
t+1)(

√
µt

′es);P
′µt +

S∑

s=1

(Isǫ
.,s
t+1)(

√
µt

′es)

]

= Cov
[
P ′µt;P

′µt
]
+ Cov

[
P ′µt;

S∑

s=1

(Isǫ
.,s
t+1)(

√
µt

′es)

]
+ Cov

[
S∑

s=1

(Isǫ
.,s
t+1)(

√
µt

′es);P
′µt

]
. . .

. . . + Cov

[
S∑

s=1

(Isǫ
.,s
t+1)(

√
µt

′es);
S∑

s=1

(Isǫ
.,s
t+1)(

√
µt

′es)

]

= P ′Var [µt]P +

S∑

s=1

P ′Cov
[
µt; (Isǫ

.,s
t+1)(

√
µt

′es)
]
+

S∑

s=1

(
P ′Cov

[
µt; (Isǫ

.,s
t+1)(

√
µt

′es)
])′
. . .

. . . +

S∑

s=1

S∑

s′=1

Cov
[
(Isǫ

.,s
t+1)(

√
µt

′es); (Is′ǫ
.,s′

t+1)(
√
µt

′es′)
]

Note that E
[
(Isǫ

.,s
t+1)(

√
µt

′es)
]
= IsE

[
(ǫ.,st+1)(

√
µt

′)
]
es = IsE

[
(ǫ.,st+1)

]
E
[
(
√
µt

′)
]
es = 0 since E

[
ǫ.,st+1

]
=

0, and, ǫ.,st+1 and µt are independent. Let us look at the second and third term of the equation above:

P ′Cov
[
µt; (Isǫ

.,s
t+1)(

√
µt

′es)
]
= E

[
(µt − µ)

(
(Isǫ

.,s
t+1)(

√
µt

′es)
)′]

= E
[
(µt − µ)(

√
µt

′es)
′(Isǫ

.,s
t+1)

′]

= E
[
(µt − µ)(

√
µt

′es)
′]E

[
(Isǫ

.,s
t+1)

′] = 0

since E
[
ǫ.,st+1

]
= 0, and, ǫ.,st+1 and µt are independent. Let us now look at the last term:

S∑

s=1

S∑

s′=1

Cov
[
(Isǫ

.,s
t+1)(

√
µt

′es); (Is′ǫ
.,s′

t+1)(
√
µt

′es′)
]
=

S∑

s=1

S∑

s′=1

E

[
(Isǫ

.,s
t+1)(

√
µt

′es)
(
(Is′ǫ

.,s′

t+1)(
√
µt

′es′)
)′]

=

S∑

s=1

S∑

s′=1

E

[
(Isǫ

.,s
t+1)

√
µt

′ese
′
s′
√
µt(Is′ǫ

.,s′

t+1)
′
]

=

S∑

s=1

E [µs,t] IsE
[
ǫ.,st+1(ǫ

.,s
t+1)

′] I ′s

= µ1I1Σ1I
′
1 +

S−1∑

s=2

µsIsΣI
′
s + µSISΣSI

′
S

where in the fourth line we use the fact that if s 6= s′ then
√
µt

′ese′s′
√
µt = 0 and if s = s′ then√

µt
′ese′s′

√
µt = µs,t. The variance-covariance matrix of µt is thus characterized by the following

discrete Lyapunov equation:

Var [µt] = P ′Var [µt]P + µ1I1Σ1I
′
1 +

S−1∑

s=2

µsIsΣI
′
s + µSISΣSI

′
S (31)
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The solution of the discrete Lyapunov Equation 31 is thus:

Var [µt] =

∞∑

k=0

(P ′)k
(
µ1I1Σ1I

′
1 +

S−1∑

s=2

µsIsΣI
′
s + µSISΣSI

′
S

)
P k

note that IsΣI ′s =

(
0 0 0
0 Σ 0
0 0 0

)
, I1Σ1I

′
1 =

(
Σ1 0
0 0

)
and ISΣSI

′
S =

(
0 0
0 ΣS

)
. �

B.5 Proof of Theorem 2

In this appendix, we state and prove the more general Theorem 3 which extends the results of Theo-
rem 2 to the entry and exit case. Formally, we show that the following theorem is true:

Theorem 3 Assume 1, then

(i) The dynamic of aggregate productivity is given by

At+1 = ρAt + ρEt(ϕ) +OA
t + σtεt+1 (32)

σ2t = ̺Dt + ̺Et(ϕ
2) +Oσ

t (33)

where E[εt+1] = 0 and Var[εt+1] = 1. The persistence of the aggregate state is ρ = aϕ
−1

1−α + b +

cϕ
1

1−α . The term Dt is given by Dt :=
∑S

s=s∗(µt)−1

(
(ϕs)

1

1−α

)2
µs,t and ̺ = aϕ

−2

1−α + b + cϕ
2

1−α −

ρ2. The terms Et(ϕ) and Et(ϕ
2) are defined using the Et(x) =

∑S
s=s∗t

xsMGs − x
s∗t −1

1−α µs∗t−1,t for

any x. The terms OA
t and Oσ

t are a correction for the upper and lower reflecting barriers in the
idiosyncratic state space definied in the proof. Furthermore, for a large number of firms the
distribution of εt+1 can be approximate by a standard normal distribution.

(ii) Aggregate output (in percentage deviation from its steady-state value) has the following law of
motion:

Ŷt+1 = ρŶt + κÔA
t + ψ

σt
A
ǫt+1 (34)

ÔA
t is the percentage deviation from steady-state ofOA

t , κ and ψ are constants defined below and
A is the steady-state value of the aggregate productivity At.

Proof: Aggregate productivity

Note first that

At+1 =

Nt+1∑

i=1

ϕ
st+1,i

1−α =

S∑

s=1

ϕ
s

1−αµs,t+1

where µs,t+1, the number of firms in productivity bin s at time t+1, is stochastic as shown in Theorem
1. Using the proof of this theorem for S > s > s∗(µt) and under Assumption 1, we have:

µs,t+1 = f s,s−1
t+1 + f s,st+1 + f s,s+1

t+1 + gs,s−1
t+1 + gs,st+1 + gs,s+1

t+1

where f s
′,s

k,t+1 is the number of firms in state s′ at t + 1 that were in state s at time t and gs
′,s

k,t+1 is the
number of entrants in state s′ at t+ 1 that received a signal s at time t. Given Assumption 1 the 3× 1

vector f .,sk,t+1 = (f s−1,s
t+1 , f s,st+1, f

s+1,s
t+1 )′ follows a multinomial distribution with number of trials µs,t+1

and event probabilities (a, b, c)′. Similarly, the 3 × 1 vector g.,sk,t+1 = (gs−1,s
t+1 , gs,st+1, g

s+1,s
t+1 )′ follows a
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multinomial distribution with number of trialsMGs and event probabilities (a, b, c)′. In other words,
for S > s ≥ s∗(µt):

f .,st+1 =

(
fs−1,s
t+1

fs,s
t+1

fs+1,s
t+1

)
 Multi

(
µs,t,

(
a
b
c

))
and g.,st+1 =

(
gs−1,s
t+1

gs,s
t+1

gs+1,s
t+1

)
 Multi

(
MGs,

(
a
b
c

))

Furthermore, we also have:

µs∗(µt)−1,t+1 = f
s∗(µt)−1,s∗(µt)
t+1 + g

s∗(µt)−1,s∗(µt)
t+1

µs∗(µt),t+1 = f
s∗(µt),s∗(µt)
t+1 + f

s∗(µt),s∗(µt)+1
t+1 + g

s∗(µt),s∗(µt)
t+1 + g

s∗(µt),s∗(µt)+1
t+1

µS,t+1 = fS,S−1
t+1 + fS,St+1 + gS,S−1

t+1 + gS,St+1

Note that we have

f .,St+1 =
(

fS−1,S
t+1

fS,S
t+1

)
 Multi (µS,t, (

a
b+c )) and g.,St+1 =

(
gS−1,S
t+1

gS,S
t+1

)
 Multi (MGS , (

a
b+c ))

Having shown these preliminary results, let us consider: 38

At+1 =
S∑

s=1

(ϕ
1

1−α )
s
µs,t+1 = (ϕ

1
1−α )

s∗t −1
µs∗t −1,t+1 + (ϕ

1
1−α )

s∗t µs∗t ,t+1 +

S−1∑

s=s∗t +1

(ϕ
1

1−α )
s
µs,t+1 + (ϕ

1
1−α )

S
µS,t+1

=(ϕ
1

1−α )
s∗t −1

(
f
s∗t −1,s∗t
t+1 + g

s∗t −1,s∗t
t+1

)
+ (ϕ

1
1−α )

s∗t

(
f
s∗t ,s∗t
t+1 + f

s∗t ,s∗t +1

t+1 + g
s∗t ,s∗t
t+1 + g

s∗t ,s∗t +1

t+1

)

. . . +

S−1∑

s=s∗t +1

(ϕ
1

1−α )
s
(
f
s,s−1
t+1 + f

s,s
t+1 + f

s,s+1
t+1 + g

s,s−1
t+1 + g

s,s
t+1 + g

s,s+1
t+1

)
+ (ϕ

1
1−α )

S
(
f
S,S−1
t+1 + f

S,S
t+1 + g

S,S−1
t+1 + g

S,S
t+1

)

=(ϕ
1

1−α )
s∗t −1

(
f
s∗t −1,s∗t
t+1 + (ϕ

1
1−α )f

s∗t ,s∗t
t+1 + g

s∗t −1,s∗t
t+1 + (ϕ

1
1−α )g

s∗t ,s∗t
t+1

)
+

. . . + (ϕ
1

1−α )
s∗t

(
f
s∗t ,s∗t +1

t+1 + g
s∗t ,s∗t +1

t+1

)
+

. . . +

S−1∑

s=s∗t +1

(ϕ
1

1−α )
s
(
f
s,s−1
t+1 + g

s,s−1
t+1

)
+

S−1∑

s=s∗t +1

(ϕ
1

1−α )
s
(
f
s,s
t+1 + g

s,s
t+1

)
+

S−1∑

s=s∗t +1

(ϕ
1

1−α )
s
(
f
s,s+1
t+1 + g

s,s+1
t+1

)
+

. . . + (ϕ
1

1−α )
S
(
f
S,S−1
t+1 + g

S,S−1
t+1

)
+ (ϕ

1
1−α )

S
(
f
S,S
t+1 + g

S,S
t+1

)

=(ϕ
1

1−α )
s∗t −1

(
f
s∗t −1,s∗t
t+1 + (ϕ

1
1−α )f

s∗t ,s∗t
t+1 + g

s∗t −1,s∗t
t+1 + (ϕ

1
1−α )g

s∗t ,s∗t
t+1

)
+

. . . + (ϕ
1

1−α )
s∗t

(
f
s∗t ,s∗t +1

t+1
+ g

s∗t ,s∗t +1

t+1

)
+

. . . + ϕ
1

1−α

S−2∑

s=s∗t

(ϕ
1

1−α )
s
(
f
s+1,s
t+1 + g

s+1,s
t+1

)
+

S−1∑

s=s∗t +1

(ϕ
1

1−α )
s
(
f
s,s
t+1 + g

s,s
t+1

)
+ (ϕ

1
1−α )

−1
S∑

s=s∗t +2

(ϕ
1

1−α )
s−1

(
f
s−1,s
t+1 + g

s−1,s
t+1

)
+

. . . + (ϕ
1

1−α )
S
(
f
S,S−1
t+1 + g

S,S−1
t+1

)
+ (ϕ

1
1−α )

S
(
f
S,S
t+1 + g

S,S
t+1

)

=(ϕ
1

1−α )
s∗t

(
ϕ

−1
1−α

(
f
s∗t −1,s∗t
t+1 + g

s∗t −1,s∗t
t+1

)
+ f

s∗t ,s∗t
t+1 + g

s∗t ,s∗t
t+1 + ϕ

1
1−α

(
f
s∗t +1,s∗t
t+1 + g

s∗t +1,s∗t
t+1

))
+

. . . + (ϕ
1

1−α )
s∗t +1

(
ϕ

−1
1−α

(
f
s∗t ,s∗t +1

t+1 + g
s∗t ,s∗t +1

t+1

)
+ f

s∗t +1,s∗t +1

t+1 + g
s∗t +1,s∗t +1

t+1 + ϕ
1

1−α

(
f
s∗t +2,s∗t +1

t+1 + g
s∗t +2,s∗t +1

t+1

))
+

. . . + ϕ
1

1−α

S−2∑

s=s∗t +2

(ϕ
1

1−α )
s
(
f
s+1,s
t+1

+ g
s+1,s
t+1

)
+

S−2∑

s=s∗t +2

(ϕ
1

1−α )
s
(
f
s,s
t+1

+ g
s,s
t+1

)
+ ϕ

−1
1−α

S−2∑

s=s∗t +2

(ϕ
1

1−α )
s
(
f
s−1,s
t+1

+ g
s−1,s
t+1

)
+

. . . + (ϕ
1

1−α )
S−1

(
ϕ

−1
1−α

(
f
S−2,S−1
t+1

+ g
S−2,S−1
t+1

)
+ f

S−1,S−1
t+1

+ g
S−1,S−1
t+1

+ ϕ
1

1−α
(
f
S,S−1
t+1

+ g
S,S−1
t+1

))

. . . + (ϕ
1

1−α )
S

(
ϕ

−1
1−α

(
f
S−1,S
t+1 + g

S−1,S
t+1

)
+ f

S,S
t+1 + g

S,S
t+1

)

=

S−1∑

s=s∗t

ϕ
s

1−α

(
ϕ

−1
1−α

(
f
s−1,s
t+1 + g

s−1,s
t+1

)
+ f

s,s
t+1 + g

s,s
t+1 + ϕ

1
1−α

(
f
s+1,s
t+1 + g

s+1,s
t+1

))
+ (ϕ

1
1−α )

S

(
ϕ

−1
1−α

(
f
S−1,S
t+1 + g

S−1,S
t+1

)
+ f

S,S
t+1 + g

S,S
t+1

)

=

S−1∑

s=s∗t

ϕ
s

1−α







ϕ

−1
1−α

1

ϕ
1

1−α




′



f
s−1,s
t+1

f
s,s
t+1

f
s+1,s
t+1


 +




ϕ

−1
1−α

1

ϕ
1

1−α




′



g
s−1,s
t+1

g
s,s
t+1

g
s+1,s
t+1





 + (ϕ

1
1−α )

S



(

ϕ

−1
1−α

1

)
′


 f

S−1,S
t+1

f
S,S
t+1


 +

(
ϕ

−1
1−α

1

)
′


 g

S−1,S
t+1

g
S,S
t+1






38note that we use the notation s∗t instead of s∗(µt) to keep the notation parsimonious)
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It is easy to see that for s < S,

E



(

ϕ
−1
1−α

1

ϕ
1

1−α

)′


f
s−1,s
t+1

f
s,s
t+1

f
s+1,s
t+1




 = µs,t

(
ϕ

−1
1−α

1

ϕ
1

1−α

)′ (
a
b
c

)
= ρµs,t and Var



(

ϕ
−1
1−α

1

ϕ
1

1−α

)′


f
s−1,s
t+1

f
s,s
t+1

f
s+1,s
t+1




 = µs,t

(
ϕ

−1
1−α

1

ϕ
1

1−α

)′

Σ

(
ϕ

−1
1−α

1

ϕ
1

1−α

)
= ̺µs,t

with

Σ =

(
a(1− a) −ab −ac
−ab b(1− b) −bc
−ac −bc c(1 − c)

)

from which it follows that
(

ϕ
−1
1−α

1

ϕ
1

1−α

)′(
fs−1,s
t+1

fs,s
t+1

fs+1,s
t+1

)
= ρµs,t +

√
̺µs,tε

f
s,t+1

where εfs,t+1 is a mean-zero, unit variance random variable, independent across time and state s
(and independent of µs,t). Furthermore, using the approximation of a multinomial by a multivariate
distribution we can see that εs,t  N (0, 1) for large µs,t (see p377 example 12.7 in Severini (2005)).
Similarly, (

ϕ
−1
1−α

1

ϕ
1

1−α

)′(
gs−1,s
t+1

gs,s
t+1

gs+1,s
t+1

)
= ρMGs +

√
̺MGsε

g
s,t+1

where εgs,t+1 is a mean-zero, unit variance random variable independent across time and state s. This
again can be approximated by a standard normal distributionN (0, 1). Using the same reasoning, we
have
(

ϕ
−1
1−α

1

)′ ( fS−1,S
t+1

fS,S
t+1

)
= ρSµS,t +

√
̺SµS,tε

f
S,t+1 and

(
ϕ

−1
1−α

1

)′ ( gS−1,S
t+1

gS,S
t+1

)
= ρSMGS +

√
̺SMGSε

g
S,t+1

where εfS,t+1 and εgS,t+1 is a mean-zero, unit variance random variable independent across time and
state for s 6= S. This can be approximated by a standard normal distribution N (0, 1). Finally,

ρS =
(

ϕ
−1
1−α

1

)′
( a
b+c ) and ̺S =

(
ϕ

−1
1−α

1

)′ ( a(1−a) −a(1−a)
−a(1−a) a(1−a)

)(
ϕ

−1
1−α

1

)

Let us these results to compute At+1

At+1 =

S−1∑

s=s∗t

ϕ
s

1−α




 ϕ

−1
1−α

1

ϕ
1

1−α




′


f
s−1,s
t+1

f
s,s
t+1

f
s+1,s
t+1


+


 ϕ

−1
1−α

1

ϕ
1

1−α




′


g
s−1,s
t+1

g
s,s
t+1

g
s+1,s
t+1




+ (ϕ

1
1−α )S

((
ϕ

−1
1−α

1

)′ (
f
S−1,S
t+1

f
S,S
t+1

)
+

(
ϕ

−1
1−α

1

)′ (
g
S−1,S
t+1

g
S,S
t+1

))

=

S−1∑

s=s∗t

ϕ
s

1−α

(
ρµs,t +

√
̺µs,tε

f
s,t+1 + ρMGs +

√
̺MGsε

g
s,t+1

)
+ (ϕ

1
1−α )S

(
ρSµS,t +

√
̺SµS,tε

f
S,t+1 + ρSMGS +

√
̺SMGSε

g
S,t+1

)

=ρ
S∑

s=s∗t

ϕ
s

1−α µs,t + ρ
S∑

s=s∗t

ϕ
s

1−α MGs +
√
̺

S∑

s=s∗t

ϕ
s

1−α

(√
µs,tε

f
s,t+1 +

√
MGsε

g
s,t+1

)
+ . . .

. . .+ (ϕ
1

1−α )S
(
(ρS − ρ)µS,t + (ρS − ρ)MGS +

(√
̺SµS,t −

√
̺µS,t

)
εfS,t+1 +

(√
̺SMGS −

√
̺MGS

)
εgS,t+1

)

=ρ
S∑

s=s∗t −1

ϕ
s

1−α µs,t + ρ
S∑

s=s∗t

ϕ
s

1−α MGs − ρϕ
s∗t −1

1−α µs∗t −1,t +
√
̺

S∑

s=s∗t

ϕ
s

1−α

(√
µs,tε

f
s,t+1 +

√
MGsε

g
s,t+1

)
+ . . .

. . .+ (ϕ
1

1−α )S
(
(ρS − ρ)µS,t + (ρS − ρ)MGS +

(√
̺SµS,t −

√
̺µS,t

)
εfS,t+1 +

(√
̺SMGS −

√
̺MGS

)
εgS,t+1

)

=ρ
S∑

s=s∗t −1

ϕ
s

1−α µs,t + ρ
S∑

s=s∗t

ϕ
s

1−α MGs − ρϕ
s∗t −1

1−α µs∗t −1,t + (ϕ
1

1−α )S
(
(ρS − ρ)µS,t + (ρS − ρ)MGS

)
+ . . .

. . .+
√
̺

S∑

s=s∗t

ϕ
s

1−α
√
µs,tε

f
s,t+1 +

√
̺

S∑

s=s∗t

ϕ
s

1−α
√

MGsε
g
s,t+1 + (ϕ

1
1−α )S

((√
̺SµS,t −

√
̺µS,t

)
εfS,t+1 +

(√
̺SMGS −

√
̺MGS

)
εgS,t+1

)
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Note that, by definition, At =
∑S

s=s∗t−1 ϕ
s

1−αµs,t and Et(ϕ) =
∑S

s=s∗t
ϕ

s

1−αMGs − ϕ
s∗t −1

1−α µs∗t−1,t. We

define OA
t ≡ (ϕ

1

1−α )S ((ρS − ρ)µS,t + (ρS − ρ)MGS). Furthermore,

Vart
[
At+1

]
= σ

2
t =Var



√

̺

S∑

s=s∗t

ϕ
s

1−α √
µs,tε

f
s,t +

√
̺

S∑

s=s∗t

ϕ
s

1−α
√

MGsε
g
s,t+1 + (ϕ

1
1−α )

S
((√

̺SµS,t+1 −√̺µS,t

)
ε
f
S,t+1

+
(√

̺SMGS −
√

̺MGS

)
ε
g
S,t+1

)



=̺
S∑

s=s∗t

ϕ
2s

1−α µs,t + ̺
S∑

s=s∗t

ϕ
2s

1−α MGs + ϕ
2S

1−α
(
(
√

̺S − √
̺)

2
µS,t + (

√
̺S − √

̺)
2
MGS

)

=̺
S∑

s=s∗t

ϕ
2s

1−α µs,t + ̺
S∑

s=s∗t

ϕ
2s

1−α MGs + ϕ
2S

1−α
(
(
√

̺S − √
̺)

2
µS,t + (

√
̺S − √

̺)
2
MGS

)

=̺

S∑

s=s∗t −1

ϕ
2s

1−α µs,t + ̺

S∑

s=s∗t

ϕ
2s

1−α MGs − ̺ϕ

2(s∗t −1)

1−α µs∗t ,t + ϕ
2S

1−α
(
(
√

̺S − √
̺)

2
µS,t + (

√
̺S − √

̺)
2
MGS

)

Note that Dt =
∑S

s=s∗t−1 ϕ
2s

1−αµs,t while Et(ϕ
2) =

∑S
s=s∗t

ϕ
2s

1−αMGs − ϕ
2(s∗t −1)

1−α µs∗t ,t and we defineOσ
t ≡

ϕ
2S

1−α

((√
̺S −√

̺
)2
µS,t +

(√
̺S −√

̺
)2
MGS

)
. It follows that

At+1 = ρAt + ρEt(ϕ) +OA
t + σtεt+1 where σt = ̺Dt + ̺Et(ϕ

2) +Oσ
t

with εt+1 a mean zero and unit variance random variable. When using the approximation of a multi-
nomial by a multivariate normal distribution, it is easy to show that εt+1 follow a standard normal
distribution. The above proof applies to the no entry-exit case with little changes using the fact that

f .,1t+1 =
(

f1,1
t+1

f2,1
t+1

)
 Multi (µ1,t, ( a+b

c ))

This completes the proof of the law of motion of aggregate productivityAt. �

Proof: Aggregate Output

To prove the law of motion of aggregate output (in percentage deviation from its steady-state value),
we first solve for aggregate output, Yt, as a function of the univariate state variableAt analytically. We
then study their first order relationship. The next step is then to take the first-order approximation
of the equation describing the dynamics of At. Finally, we find the implied first-order dynamics of
Yt.
Let us first compute aggregate output Yt as a function ofAt only:

Yt =

Nt∑

i=1

yi
t =

S∑

s=1

µs,t(ϕ
s)

1
1−α

( α

wt

) α
1−α

=
( α

wt

) α
1−α

At

Recall that wt =
(
α

1

1−α At

LM

) 1−α

γ(1−α)+1

. Substituting the expression of the wage in the latter equation

yields Yt = α
αγ

γ(1−α)+1

(
1

L(M)

) −α

γ(1−α)+1

(At)
1− α

γ(1−α)+1 . This last equality, taken at the first order, implies

that:
Ŷt =

(
1− α

γ(1− α) + 1

)
Ât (35)

where X̂t of a variableXt is the percentage deviation from its steady-state valueX: X̂t = (Xt−X)/X.

Let us define ψ ≡
(
1− α

γ(1−α)+1

)
.

We then take the percentage deviation from steady-state of Equation 32:

At+1 =ρAt + ρEt +OA
t + σtεt+1

A =ρA+ ρE +OA

At+1 − A =ρ(At − A) + ρ(Et − E) + (OA
t −O) + σtεt+1

At+1 − A

A
=ρ

At − A

A
+ ρ

E

T

Et − E

E
+

OA

A

OA
t −O

O
+

σt

A
εt+1
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Ât+1 =ρÂt + ρ
E

A
Êt +

OA

A
ÔA

t +
σt

A
εt+1

Ŷt+1 =ρŶt +

(
1− α

γ(1− α) + 1

)
ρ
E

A
Êt +

(
1− α

γ(1− α) + 1

)
OA

A
ÔA

t +

(
1− α

γ(1− α) + 1

)
σt

A
εt+1

where the second line is Equation 32 at the steady-state; in the third line we subtract the second
from the first line; in the fourth line we divide both sides by the steady-state value of A and in the
last line we use Equation 35. �

B.6 Proof of Proposition 3: Aggregate Persistence

In this appendix, we prove Proposition 3 regarding the comparative statics results for aggregate per-
sistence, ρ. We first express ρ as a function of b, a measure of micro-level persistence, and of δ, the
tail of the productivity stationary distribution.

First, note that from definition δ = log(a/c)
logϕ , it follows that c = aϕ−δ. Secondly, from the fact that

b = 1 − a − c = 1 − a(1 + ϕ−δ) we have that a = 1−b
1+ϕ−δ . From Theorem 2, aggregate persistence is

ρ = aϕ
−1

1−α + b+ cϕ
1

1−α . In this last equation, let us substitute c and a using c = aϕ−δ and a = 1−b
1+ϕ−δ :

ρ =
1− b

1 + ϕ−δ
ϕ

−1
1−α + b+ ϕ−δϕ

1
1−α

1− b

1 + ϕ−δ

ρ =
1− b

1 + ϕ−δ

[
ϕ

−1
1−α − ϕ−δ + ϕ−δϕ

1
1−α − 1

]
+ 1

First, it is clear that if δ = 1
1−α , then it follows that ρ = 1. This is exactly (iii) of the Proposition 3.

Second, from the expression of ρ, it is clear that dρ
db > 0 if and only if g(δ) = ϕ

−1

1−α −ϕ−δ+ϕ−δϕ
1

1−α −1 <

0. Note that g( 1
1−α ) = 0 and g(δ) −→

δ→∞
ϕ

−1

1−α − 1 < 0 since ϕ > 1. The derivative of g is g′(δ) =

−(− logϕ)ϕ−δ + (− logϕ)ϕ−δ+ 1

1−α < 0. It follows that for δ > 1
1−α , then g(δ) < 0 and thus dρ

db > 0. We
have just shown (i).

Finally to show (ii), let us rewrite ρ = − (b−1)g(δ)
1+ϕ−δ + 1. We have shown that for g(δ) is decreasing in δ,

since b < 1 it is clear that (b−1)g(δ) is increasing in δ. Note that 1
1+ϕ−δ is also increasing in δ. It follows

that (b−1)g(δ)
1+ϕ−δ is increasing in δ which then implies that ρ is decreasing in δ, which is the statement in

(ii).

�

B.7 Intermediate result: the link between the number of incumbentsN and the number
of potential entrants M

In this appendix, we are interested in the relationship between the number of incumbents N , the
number of potentials entrants M , and the value of their ratio when N goes to infinity. We show that
as N goes to infinity, the ratio M/N goes to a constant. This means that taking the endogenous
variable N or the exogenous parameterM to infinity is strictly equivalent.
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The number of firms is simply the sum of the number of firms in each bin:

N =
S∑

s=1

µs = µs∗−1 +
S∑

s=s∗

µs

=a
(
MKeC1 +MKeC2(ϕ

s∗)−δe +MKeC3 +MKe(ϕ
s∗)−δe

)
+MKeC3

S∑

s=s∗

1

+MKeC1(ϕ
s∗)δ

S∑

s=s∗

(ϕs)−δ +MKeC2

S∑

s=s∗

(ϕs)−δe

=a
(
MKeC1 +MKeC2(ϕ

s∗)−δe +MKeC3 +MKe(ϕ
s∗)−δe

)
+MKeC3(S − s∗ + 1)

+MKeC1(ϕ
s∗)δ

(
ϕ−δ

)s∗ −
(
ϕ−δ

)S

1− ϕ−δ
+MKeC2

(
ϕ−δe

)s∗ −
(
ϕ−δe

)S

1− ϕ−δe

thus, by dividing both side byM , we have

N

M
= a

(
KeC1 +Ke(C2 + 1)(ϕs∗ )−δe +KeC3

)
+KeC3(S− s∗ +1)+KeC1(ϕ

s∗ )δ
(
ϕ−δ

)s∗ −
(
ϕ−δ

)S

1− ϕ−δ
+KeC2

(
ϕ−δe

)s∗ −
(
ϕ−δe

)S

1− ϕ−δe

Let us note that under assumption 2
(
ϕ−δ

)S
=
(
ϕS
)−δ

=
(
ZN1/δ

)−δ

= Z−δN−1 −→
N→∞

0

and that, since S = 1
logϕ(logZ + 1

δ logN), we have

SC3 =
1

logϕ
(logZ +

1

δ
logN)

−ϕ−δeZ−δe

(1− ϕ−δe)(a− c)
N−δe/δ −→

N→∞
0

Thus, we have that
N

M
−→

N→∞
(E∞)−1 :=a

(
(ϕδe − 1)C∞

1 + (ϕδe − 1)(C2 + 1)(ϕs∗)−δe
)

+ (ϕδe − 1)C∞
1

1

1− ϕ−δ
+ (ϕδe − 1)C2

(
ϕ−δe

)s∗

1− ϕ−δe

where E∞ is the ratio of the number of potential entrants M and the number of incumbents, when
there is an infinite number of incumbents. The last equation shows that M and N are equivalent
when the number of incumbents is large. Thus, taking N to infinity is the same as taking M to
infinity i.e M ∼

N→∞
E∞N .

B.8 Proof of Propositions 4 and 5: Aggregate Volatility

In this appendix, we prove Proposition 5 describing how aggregate volatility decays with the number
of firmsN . This proof nests the proof of Proposition 4.

To prove this proposition, we study the asymptotic behavior of A, D and deduce the one for D/A2,
again when the number of firms N goes to infinity. We complete the proof by studying the behavior
of the remaining terms E(ϕ2) andOσ and E(ϕ2)/A2 and Oσ/A2.

At this stage is important to note that, under Assumption 2, whenN (and thus S) goes to infinity, the
limit of the wage and the threshold are w and s∗ which satisfies the system of equations given by the
equation in Lemma 2 and in Proposition 1.

Step 0: Limit of the stationary distribution when the number of firms goes to infinity

The second step of the proof below will consist of finding the limit of constants Ke, C1, C2 and C3 as
the number of firms N goes to infinity. After finding these limits, we take the limit of Equation 25 in
the previous lemma.
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Here we first describe the asymptotic behavior of Ke. Recall that the entrant distribution sums to
one.39

1 =

S∑

s=1

Gs = Ke

S∑

s=1

(ϕs)−δe = Ke

S∑

s=1

(
ϕ−δe

)s
= Ke

ϕ−δe −
(
ϕ−δe

)S+1

1− ϕ−δe

Rearranging terms, it follows that

Ke =
1− ϕ−δe

ϕ−δe − (ϕ−δe)S+1

Under Assumption 2 and since δe, δ > 0 we have
(
ϕ−δe

)S
=
(
ϕS
)−δe

=
(
ZN1/δ

)−δe
= Z−δeN−δe/δ −→

N→∞
0

by applying these results to the expression for Ke, it follows that Ke −→
N→∞

ϕδe − 1.

Let us now focus on the asymptotic behavior of C3, C2 andC1. From Lemma 1, we have

C3 =
−(ϕ−δe)S+1

(1− ϕ−δe)(a− c)
=

−ϕ−δe(ϕS)−δe

(1− ϕ−δe)(a− c)
=

−ϕ−δeZ−δe

(1− ϕ−δe)(a− c)
N−δe/δ −→

N→∞
0

We also have that

C2 :=

(
a(ϕ−δe)2 + bϕ−δe + c

)

(a(ϕ−δe)2 − ϕ−δe(a+ c) + c)

which is independent of S and thus ofN .

Finally, we have

C1 =
c
(
a(ϕ−δe)S+2 − a(ϕ−δe)s

∗ − c(ϕ−δe)S+3 + c(ϕ−δe)s
∗

)

a(1− ϕ−δe)(a− c)(aϕ−δe − c)

−→
N→∞

c
(
−a(ϕ−δe)s

∗

+ c(ϕ−δe)s
∗

)

a(1− ϕ−δe)(a− c)(aϕ−δe − c)
=

c

a

−(a− c)(ϕ−δe)s
∗

(1− ϕ−δe)(a− c)(aϕ−δe − c)

and therefore

C1 −→
N→∞

C∞
1 :=

c

a

(ϕ−δe)s
∗

(1− ϕ−δe)(c− aϕ−δe)

We have just found the limit ofKe,C1,C2 andC3 whenN goes to infinity. We then apply these results
to the stationary distribution by takingN to infinity. According to Lemma 1, we have for s∗ ≤ s ≤ S:

µs

M
= KeC1

(
ϕs

ϕs∗

)−δ

+KeC2(ϕ
s)−δe +KeC3

Under assumption 2, we have just shown that when the number of firms, N , goes to infinity, the
stationary distribution is given by:

µs

M
=
(
ϕδe − 1

) c

a

(ϕ−δe)s
∗

(1− ϕ−δe)(c− aϕ−δe)

(
ϕs

ϕs∗

)−δ

+
(
ϕδe − 1

) (
a(ϕ−δe)2 + bϕ−δe + c

)

(a(ϕ−δe)2 − ϕ−δe(a+ c) + c)
(ϕs)−δe

Step 1: How A evolves when the number of incumbents converges to infinity

39Recall that we assume that G sums to one. We also assume that the number of potential entrants in bin s is MGs, so
that the total number of potential entrants is M .
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For a given number of firms, let us look at the expression for A:

A =
S∑

s=1

(ϕs)
1

1−α µs

=(ϕs∗−1)
1

1−α µs∗−1 +

S∑

s=s∗

(ϕs)
1

1−α µs

=(ϕs∗−1)
1

1−α a

(
MKeC1 +MKeC2

(
ϕs∗
)−δe

+MKeC3 +MKe(ϕ
s∗)−δe

)

+
S∑

s=s∗

(ϕs)
1

1−α

(
MKeC1

(
ϕs

ϕs∗

)−δ

+MKeC2 (ϕ
s)−δe +MKeC3

)

Dividing both sides byM , we get

A

M
=a(ϕs∗−1)

1
1−α

(
KeC1 +KeC2

(
ϕs∗
)−δe

+KeC3 +Ke(ϕ
s∗)−δe

)

+KeC1

(
ϕs∗
)δ S∑

s=s∗

(
ϕ−δ+ 1

1−α

)s
+KeC2

S∑

s=s∗

(
ϕ−δe+

1
1−α

)s
+KeC3

S∑

s=s∗

(ϕ
1

1−α )s

=a(ϕs∗−1)
1

1−α

(
KeC1 +KeC2

(
ϕs∗
)−δe

+KeC3 +Ke(ϕ
s∗)−δe

)

+KeC1

(
ϕs∗
)δ
(
ϕ−δ+ 1

1−α

)s∗
−
(
ϕ−δ+ 1

1−α

)S+1

1− ϕ−δ+ 1
1−α

+KeC2

(
ϕ−δe+

1
1−α

)s∗
−
(
ϕ−δe+

1
1−α

)S+1

1− ϕ−δe+
1

1−α

+KeC3
(ϕ

1
1−α )s

∗ − (ϕ
1

1−α )S+1

1− ϕ
1

1−α

Recall that under assumption 2, we have

(ϕ
1

1−α )S = (ϕS)
1

1−α = (ZN1/δ)
1

1−α = Z
1

1−αN
1

δ(1−α)

(
ϕ−δ+ 1

1−α

)S
=
(
ϕS
)−δ+ 1

1−α
=
(
ZN1/δ

)−δ+ 1
1−α

= Z−δ+ 1
1−α N

−1+ 1
δ(1−α)

(
ϕ−δe+

1
1−α

)S
=
(
ϕS
)−δe+

1
1−α

=
(
ZN1/δ

)−δe+
1

1−α
= Z−δe+

1
1−αN

− δe
δ

+ 1
δ(1−α)

Since we assume that δ(1−α) > 1 and δe(1−α) > 1 we have both − δe
δ + 1

δ(1−α) < 0 and−1+ 1
δ(1−α) < 0

and thus both
(
ϕ−δ+ 1

1−α

)S
and

(
ϕ−δe+

1

1−α

)S
converge to zero when N goes to infinity. We also have

that
C3(ϕ

1
1−α )S =

−ϕ−δeZ−δe

(1− ϕ−δe)(a− c)
Z

1
1−αN

−δe/δ+
1

δ(1−α) −→
N→∞

0

Putting these results together yields

A

M
−→

N→∞
A∞ := a(ϕs∗−1)

1
1−α

(
(ϕδe − 1)C∞

1 + (ϕδe − 1)(C2 + 1)
(
ϕs∗
)−δe

)

+ (ϕδe − 1)C∞
1

(
ϕ

1
1−α

)s∗

1− ϕ−δ+ 1
1−α

+ (ϕδe − 1)C2

(
ϕ−δe+

1
1−α

)s∗

1− ϕ−δe+
1

1−α

In other words, under assumption 2 and if δ(1 − α) > 1 and δe(1− α) > 1 then A ∼
M→∞

A∞M or

A ∼
N→∞

E∞A∞N (36)

Step 2: How D evolves when the number of incumbents converges to infinity
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For a given number of firms, the steady-state value of D:

D =
S∑

s=1

(
(ϕs)

1
1−α

)2
µs

=
(
(ϕs∗−1)

1
1−α

)2
µs∗−1 +

S∑

s=s∗

(
(ϕs)

1
1−α

)2
µs

D

M
=(ϕs∗−1)

2
1−α µ̂s∗−1 +KeC1(ϕ

s∗)δ
S∑

s=s∗

(ϕs)
2

1−α
−δ +KeC2

S∑

s=s∗

(ϕs)
2

1−α
−δe +KeC3

S∑

s=s∗

(ϕs)
2

1−α

=a(ϕs∗−1)
2

1−α

(
KeC1 +Ke(C2 + 1)

(
ϕs∗
)−δe

+KeC3

)

+KeC1(ϕ
s∗)δ

(ϕ
2

1−α
−δ)s

∗ − (ϕ
2

1−α
−δ)S+1

1− ϕ
2

1−α
−δ

+KeC2
(ϕ

2
1−α

−δe)s
∗ − (ϕ

2
1−α

−δe)S+1

1− ϕ
2

1−α
−δe

+KeC3
(ϕ

2
1−α )s

∗ − (ϕ
2

1−α )S+1

1− ϕ
2

1−α

Under assumption 2, we have

(ϕ
2

1−α
−δ)S = (ϕS)

2
1−α

−δ = (ZN1/δ)
2

1−α
−δ = Z

2
1−α

−δN
2

δ(1−α)
−1

(ϕ
2

1−α
−δe)S = (ϕS)

2
1−α

−δe = (ZN1/δ)
2

1−α
−δe = Z

2
1−α

−δeN
2

δ(1−α)
− δe

δ

C3(ϕ
2

1−α )S = C3(ϕ
S)

2
1−α =

−ϕ−δeZ−δe

(1− ϕ−δe)(a− c)
(Z)

2
1−α N

2
δ(1−α)

− δe
δ

Under the assumption that δ(1 − α) < 2 and δe(1 − α) < 2, these terms diverge when N goes to
infinity. Thus we are able to look at the asymptotic equivalent ofD/M ,

D

M
∼

N→∞
a(ϕs∗−1)

2
1−α

(
(ϕδ

e − 1)C∞
1 + (ϕδ

e − 1)(C2 + 1)
(
ϕs∗
)−δe

)

+ (ϕδ
e − 1)C∞

1 (ϕs∗)δ
−ϕ

2
1−α

−δ

1− ϕ
2

1−α
−δ

Z
2

1−α
−δN

2
δ(1−α)

−1

+

(
(ϕδ

e − 1)C2
−ϕ

2
1−α

−δe

1− ϕ
2

1−α
−δe

Z
2

1−α
−δe + (ϕδ

e − 1)
−ϕ

2
1−α

1− ϕ
2

1−α

−ϕ−δeZ−δe

(1− ϕ−δe)(a− c)
(Z)

2
1−α

)
N

2
δ(1−α)

− δe
δ

By using the intermediate result above on the link between N and M , we have

D ∼
N→∞

a(ϕs∗−1)
2

1−α

(
(ϕδ

e − 1)C∞
1 + (ϕδ

e − 1)(C2 + 1)
(
ϕs∗
)−δe

)
E∞N

+ (ϕδ
e − 1)C∞

1 (ϕs∗)δ
−ϕ

2
1−α

−δ

1− ϕ
2

1−α
−δ

Z
2

1−α
−δE∞N

2
δ(1−α)

+

(
(ϕδ

e − 1)C2
−ϕ

2
1−α

−δe

1− ϕ
2

1−α
−δe

Z
2

1−α
−δe + (ϕδ

e − 1)
−ϕ

2
1−α

1− ϕ
2

1−α

−ϕ−δeZ−δe

(1− ϕ−δe)(a− c)
(Z)

2
1−α

)
E∞N

2
δ(1−α)

− δe
δ

+1

Or equivalently, defining the appropriate constants D∞
1 ,D

∞
2 and D∞

3 we have that, under Assump-
tion 2:

D ∼
N→∞

D∞
1 N +D∞

2 N
2

δ(1−α) +D∞
3 N

2
δ(1−α)

− δe
δ

+1 (37)

Step 3: How D/A2 evolves withN :
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The first term of aggregate volatility described by Equation 33 is D
A2 . Let us look at its equivalent

when N goes to infinity by combining Equations 36 and 37

D

A2
∼

N→∞

D∞

1
(E∞A∞)

N
+

D∞

2
(E∞A∞)

N
2− 2

δ(1−α)

+

D∞

3
(E∞A∞)

N
1+ δe

δ
− 2

δ(1−α)

Under the assumptions that δ(1−α) < 2 and δe(1−α) < 2, then 2− 2
δ(1−α) < 1 and 1+ δe

δ − 2
δ(1−α) < 1.

In other words, the last two terms dominate the first term and thus:

D

A2
∼

N→∞

D∞

2
(E∞A∞)

N
2− 2

δ(1−α)

+

D∞

3
(E∞A∞)

N
1+ δe

δ
− 2

δ(1−α)

(38)

�

Step 4: How E(ϕ2) andOσ evolve withN

Here we prove a similar result for the remaining terms in Equation 33, i.e. E(ϕ2)/A2 and Oσ/A2. We
first find the expression for E(ϕ2)

M and then for Oσ

M , when N → ∞. The steady-state expression of
E(ϕ2) is

E(ϕ2) =

(
M

S∑

s=s∗

Gs

(
ϕ2s) 1

1−α

)
−
((

ϕ2(s∗−1)
) 1

1−α
µs∗−1,t

)

=

(
MKe

S∑

s=s∗

(ϕs)−δe
(
ϕ2s) 1

1−α

)
−
((

ϕ2(s∗−1)
) 1

1−α
µs∗−1,t

)

=MKe

(
ϕ−δe+

2
1−α

)S+1

−
(
ϕ−δe+

2
1−α

)s∗

(
ϕ−δe+

2
1−α

)
− 1

−
((

ϕ
2

1−α

)(s∗−1)

µs∗−1,t

)

Under Assumption 2, we still have

(ϕ
2

1−α
−δe)S = (ϕS)

2
1−α

−δe = (ZN1/δ)
2

1−α
−δe = Z

2
1−α

−δeN
2

δ(1−α)
− δe

δ

Thus, it follows

E(ϕ2)

M
=Ke

(
Z

2
1−α

−δeN
2

δ(1−α)
− δe

δ ϕ−δe+
2

1−α

)
−
(
ϕ−δe+

2
1−α

)s∗

(
ϕ−δe+

2
1−α

)
− 1

−
((

ϕ
2

1−α

)(s∗−1) (
KeC1 +Ke(C2 + 1)ϕs∗ +KeC3

))

=KeN
2

δ(1−α)
− δe

δ

(
Z

2
1−α

−δeϕ−δe+
2

1−α

)
−N

−2
δ(1−α)

+ δe
δ

(
ϕ−δe+

2
1−α

)s∗

(
ϕ−δe+

2
1−α

)
− 1

−
((

ϕ
2

1−α

)(s∗−1) (
KeC1 +Ke(C2 + 1)ϕs∗ +KeC3

))

Under the assumption that δe(1− α) < 2, we have

E(ϕ2)

M
∼KeN

2
δ(1−α)

− δe
δ

(
Z

2
1−α

−δeϕ−δe+
2

1−α

)

(
ϕ−δe+

2
1−α

)
− 1

−
((

ϕ
2

1−α

)(s∗−1) (
ϕδe − 1

)(
C∞

1 + (C2 + 1)ϕs∗
))

Recall that M ∼ E∞N . Then, for some constant E∞
1 and E∞

2 , we have E(ϕ2) ∼ E∞
1 N

1− δe
δ
+ 2

δ(1−α) +
E∞

2 N . Using the fact thatA2 ∼
N→∞

E∞A∞N and the above equation, we get for some other constant

E∞
1 and E∞

2 :
E(ϕ2)

A2
∼ E∞

1

N
1+

δe
δ

− 2
δ(1−α)

+
E∞
2

N
∼ E∞

1

N
1+

δe
δ

− 2
δ(1−α)

(39)
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where the last equivalence comes from the fact that δ(1 − α) > 2 and δe(1 − α) > 2 and thus 1 >
1 + δe

δ − 2
δ(1−α) .

The steady-state expression for Oσ is:

Oσ

M
= −Ke(̺− ̺′)(ϕ−δe(ϕ

1
1−α )2)S − (̺− ̺′)(ϕ

1
1−α )2S µ̂S

= −Ke(̺− ̺′)(ϕ−δe(ϕ
1

1−α )2)S − (̺− ̺′)(ϕ
1

1−α )2S
(
KeC1(ϕ

s∗)−δ(ϕS)−δ +KeC2(ϕ
S)−δe +KeC3

)

= −Ke(̺− ̺′)(ϕ−δe+
2

1−α )S − (̺− ̺′)
(
KeC1(ϕ

s∗)−δ(ϕ−δ+ 2
1−α )S +KeC2(ϕ

−δe+
2

1−α )S +KeC3(ϕ
2

1−α )S
)

Recall that under Assumption 2,

(ϕ
2

1−α
−δ)S = (ϕS)

2
1−α

−δ = (ZN1/δ)
2

1−α
−δ = Z

2
1−α

−δN
2

δ(1−α)
−1

(ϕ
2

1−α
−δe)S = (ϕS)

2
1−α

−δe = (ZN1/δ)
2

1−α
−δe = Z

2
1−α

−δeN
2

δ(1−α)
− δe

δ

C3(ϕ
2

1−α )S = C3(ϕ
S)

2
1−α =

−ϕ−δeZ−δe

(1− ϕ−δe)(a− c)
(Z)

2
1−α N

2
δ(1−α)

− δe
δ

Using the above relations, we then have, for some constants O∞
1 andO∞

2 ,

Oσ ∼ O∞
1 N

1− δe
δ

+ 2
δ(1−α) +O∞

2 N
2

δ(1−α)

from which it follows that for, some other constants, O∞
1 and O∞

2

Oσ

A2
∼ O∞

1

N
1+

δe
δ

− 2
δ(1−α)

+
O∞

2

N
2− 2

δ(1−α)

(40)

Putting Equations 38, 39 and 40 together yields the results in Equation 13. �

B.9 Proof of Proposition 6

To solve for the general case with aggregate uncertainty, we deploy a different strategy relative to that
used in the stationary case. Whereas we used a constructive proof for the stationary case, we follow
a guess and verify strategy for the case featuring aggregate fluctuations. We first show some useful
preliminary results to compute conditional expectations. We then show that the value function has
to be bounded above by the value of a firm when cf = 0. Finally, we form our guess and solve for the
value function.

B.9.1 Preliminary Results

Lemma 3 Under Assumption 3, for any ξ

Et

[
wξ
t+1

]
≈ wξ

t ρ
(1−α)ξ

γ(1−α)+1 I(ξ)

where

I(ξ) =

∫ ∞

−∞

(
1 +

E(ϕ)

A
+
OA

A
+
σ

A
ε

) (1−α)ξ

γ(1−α)+1

φ(ε)dε

where φ(ε) is the probability distribution function of a standard normal random variable andX is the
stationary equilibrium value of Xt.
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Proof: First note that, in equilibrium, wξ
t =

(
α

1

1−α At

M

) (1−α)ξ

γ(1−α)+1

. Let us now compute the conditional

expectation

Et

[
wξ
t+1

]
=

∫

µt+1

wξ
t+1Γ(dµt+1|µt) =

∫

µt+1

(
α

1

1−α
At+1

M

) (1−α)ξ

γ(1−α)+1

Γ(dµt+1|µt)

=

(
α

1

1−α
At

M

) (1−α)ξ

γ(1−α)+1
∫

µt+1

(
At+1

At

) (1−α)ξ

γ(1−α)+1

Γ(dµt+1|µt)

=

(
α

1

1−α
At

M

) (1−α)ξ

γ(1−α)+1
∫

µt+1

(
ρAt + ρEt(ϕ) +OA

t + σtεt+1

At

) (1−α)ξ

γ(1−α)+1

Γ(dµt+1|µt)

= ρ
(1−α)ξ

γ(1−α)+1wξ
t

∫ ∞

−∞

(
1 +

Et(ϕ)

At
+
OA

t

ρAt
+

σt
ρAt

ε

) (1−α)ξ

γ(1−α)+1

φ(ε)dε

where we use Theorem 3 in the third line. Under Assumption 3, the integral in the last equation is
equal to I(ξ) which completes the proof of the lemma. �

B.9.2 Bounded Above by the case cf = 0

Lemma 4 For S → ∞, the value function of a firm at productivity level ϕs with aggregate state µt
satisfies the following inequality

V (µt, ϕ
s) ≤ V cf=0(µt, ϕ

s)

where V cf=0(µt, ϕ
s) is the value of a firm at productivity level ϕs with aggregate state µt that faces an

operating cost cf equal to zero. This is equal to

V cf=0(µt, ϕ
s) =

(1− α)α
α

1−α

1− ρβ̃α
w

−α

1−α

t (ϕs)
1

1−α

where β̃α = βI
(

−α
1−α

)
ρ

−α

γ(1−α)+1 and I(ξ) =
∫∞
−∞

(
1 + E(ϕ)

A + OA

A + σ
Aε
) (1−α)ξ

γ(1−α)+1

φ(ε)dε. The inequality

becomes an equality when cf = 0.

Proof:

We prove this proposition in two steps. We first show the inequality stated in the Lemma and then
solve for V cf=0(µt, ϕ

s).

Bounding V (µt, ϕs) ≤ V cf=0(µt, ϕs): First note that the instantaneous profit is bounded above by the
profit of a firm facing zero fixed operating costs cf :

π∗(µ,ϕs) = (ϕs)
1

1−α

(α
w

) α

1−α

(1− α)− cf ≤ πcf=0(µ,ϕs) = (ϕs)
1

1−α

(α
w

) α

1−α

(1 − α)

A firm j’s problem can be rewritten as a stopping time problem:

V (µt, ϕ
sj,t) = max

L

{
Et

L∑

i=t

βi−tπ∗(µi+t, ϕ
sj,t+i)

}
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where the j firm choose the optimal time of exit, L, to maximize its discounted sum of instantaneous
profit. The same firm facing an operating cost cf = 0 every period will have a value

V cf=0(µt, ϕ
sj,t) = max

L

{
Et

L∑

i=t

βi−tπcf=0(µi+t, ϕ
sj,t+i)

}

It is optimal for this firm to choose L = ∞. Since ∀(s, µ), π∗(µ,ϕs) ≤ πcf=0(µ,ϕs) we have

V (µt, ϕ
sj,t) ≤ V cf=0(µt, ϕ

sj,t)

This completes the first part of the proof.

Solving for V cf=0(µt, ϕs): Note that V cf=0(µt, ϕ
s) must satisfy the following Bellman equation:

V cf=0(µt, ϕ
sj,t) = πcf=0(µ,ϕsj,t) + βEt

[
V cf=0(µt, ϕ

sj,t+1)
]

(41)

We are following a guess and verify strategy. Our guess is

V cf=0(µt, ϕ
s) = K1 +K2w

−α

1−α

t (ϕs)
1

1−α

and we are solving forK1 andK2. Let us compute the right hand side of the Bellman equation above.
It is easy to show using the definition of ρ

aV cf=0(µt, ϕ
s−1) + bV cf=0(µt, ϕ

s) + cV cf=0(µt, ϕ
s+1) = K1 +K2ρw

−α

1−α

t (ϕs)
1

1−α

and the continuation value is
∫

w′

(
aV cf=0(µ′, ϕs−1) + bV cf=0(µ′, ϕs) + cV cf=0(µ′, ϕs+1)

)
Γ(dµ′|µt)

= K1 +K2ρ (ϕ
s)

1

1−α

∫

w′

w′ −α

1−αΓ(dµ′|µt)

= K1 +K2ρ (ϕ
s)

1

1−α w
−α

1−α

t I

( −α
1− α

)
ρ

−α

γ(1−α)+1

where we use Lemma 3 in the last line of derivations. The Bellman Equation 41 writes

K1 +K2w
−α

1−α

t (ϕs)
1

1−α = (ϕs)
1

1−α

(
α

wt

) α

1−α

(1− α) + βK1 + βK2ρ (ϕ
s)

1

1−α w
−α

1−α

t I

( −α
1− α

)
ρ

−α

γ(1−α)+1

Matching coefficients yields

K1 = βK1

K2 =
(1− α)α

α

1−α

1− ρβI
(

−α
1−α

)
ρ

−α

γ(1−α)+1

Since β < 1 it follows that K1 = 0 and the value of a firm facing zero operating cost at productivity
level ϕs and aggregate state µt is equal to

V cf=0(µt, ϕ
s) =

(1− α)α
α

1−α

1− ρβI
(

−α
1−α

)
ρ

−α

γ(1−α)+1

w
−α

1−α

t (ϕs)
1

1−α

�
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Proof of the proposition

The value of an incumbent firm, V (µt, ϕ
s), satisfies the following Bellman equation:

V (µt, ϕ
s) = π∗(µt, ϕ

s) + βmax

{
0,

∫

µ′

(
aV (µ′, ϕs−1) + bV (µ′, ϕs) + cV (µ′, ϕs+1)

)
Γ(dµ′|µt)

}

the policy function of such a problem satisfies a threshold rule, with threshold s∗(µ) such that

V (µt, ϕ
s) =

{
π∗(µt, ϕ

s) + β
∫
µ′

(
aV (µ′, ϕs−1) + bV (µ′, ϕs) + cV (µ′, ϕs+1)

)
Γ(dµ′|µt) for s ≥ s∗(µt)

π∗(µt, ϕ
s) for s ≤ s∗(µt)− 1

(42)

We adopt a guess and verify strategy to prove this proposition. In this case, we are forming a guess for
both s∗(µt) and V (µt, ϕ

s). To form our guess we are going to draw our inspiration from the stationary
case. In that case, we first solved for the homogeneous equation, and we were using the roots of this
equation. The equivalent of this homogeneous equation in the current setting is:

a+ bX + cX2 =
X

βρ
−α(1−α)

γ(1−α)+1

log X

log ϕ I
(
−α logX

logϕ

)

Let r̃1 and r̃2 be the two solutions of this equation, such that r̃1 > ϕ
1

1−α > r̃2. Let us define the

constants β̃i = βρ
−α(1−α)

γ(1−α)+1

log r̃i
log ϕ I

(
−α log r̃i

logϕ

)
for i = 1, 2. It is clear that r̃i satisfies

ar̃i
s + br̃i

s+1 + cr̃i
s+2 = r̃i

s
(
a+ br̃i + cr̃i

2
)
= r̃i

s r̃i

β̃i
=
r̃i

s+1

β̃i

Guess for s∗(µt): We are guessing that the entry/exit thesholds take the same form as in the sta-
tionary case:

s∗(µt) = (1− α)
log χ

log ϕ
+ α

logwt

logϕ

where χ is a constant to be solved for. Given this, it is easy to show that for anyX > 0

X−s∗(wt) = X−(1−α) log χ

log ϕ
−α log wt

log ϕ = X−(1−α) log χ

log ϕX−α log wt
log ϕ = χ−(1−α) log X

log ϕw
−α log X

log ϕ

t

Guess for V (µt, ϕ
s): To form a guess of the value function, we draw inspiration from the stationary

case and thus our guess is, for s ≥ s∗(wt)

V (µt, ϕ
s) = K1 +K2w

−α

1−α

t

(
ϕ

1

1−α

)s
+K3r̃2

s+1−s∗(wt) +K4r̃1
s+1−s∗(wt)

where the constants K1,K2,K3 and K4 have to be solves for. Using this guess for s∗(wt) gives

V (µt, ϕ
s) = K1 +K2w

−α

1−α

t

(
ϕ

1

1−α

)s
+K3χ

−(1−α) log r̃2
log ϕ w

−α
log r̃2
log ϕ

t r̃2
s+1 +K4χ

−(1−α) log r̃1
log ϕ w

−α
log r̃1
log ϕ

t r̃1
s+1

Let us introduce the following simplifying notation. Let us define K̃3 = K3χ
−(1−α) log r̃2

log ϕ and K̃4 =

K4χ
−(1−α) log r̃1

log ϕ , and V (wt, s) = V (µt, ϕ
s). With this notation, our guess can be written, for s ≥ s∗(wt)

V (wt, s) = K1 +K2w
−α

1−α

t

(
ϕ

1

1−α

)s
+ K̃3w

−α log r̃2
log ϕ

t r̃2
s+1 + K̃4w

−α log r̃1
log ϕ

t r̃1
s+1
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Bellman equation: We are computing the right hand side of the Bellman Equation 42 starting with
the continuation value of an incumbent firm. Note that

aV (wt, s− 1) + bV (wt, s) + cV (wt, s+ 1) =

K1(a+ b+ c)

+K2w
−α

1−α

t

(
ϕ

1

1−α

)s (
aϕ

−1

1−α + b+ cϕ
1

1−α

)

+ K̃3w
−α log r̃2

log ϕ

t

(
ar̃2

s + br̃2
s+1 + cr̃2

s+2
)

+ K̃4w
−α

log r̃1
log ϕ

t

(
ar̃1

s + br̃1
s+1 + cr̃1

s+2
)

=K1 +K2ρw
−α

1−α

t

(
ϕ

1

1−α

)s
+ K̃3w

−α log r̃2
log ϕ

t

1

β̃2
r̃2

s+1 + K̃4w
−α log r̃1

log ϕ

t

1

β̃1
r̃1

s+1

using the definition of ρ and r̃i. Let us now compute the continuation value of an incumbent
∫

w′

[
aV (w′, s− 1) + bV (w′, s) + cV (w′, s+ 1)

]
Γ(dµ′|µt)

= K1 +K2ρ
(
ϕ

1
1−α

)s ∫

w′

w′ −α
1−αΓ(dµ′|µt) + K̃3

1

β̃2

r̃2
s+1

∫

w′

w′−α
log r̃2
log ϕ Γ(dµ′|µt) + K̃4

1

β̃1

r̃1
s+1

∫

w′

w′−α
log r̃1
log ϕ Γ(dµ′|µt)

= K1 +K2ρ
(
ϕ

1
1−α

)s
I

(
−α

1− α

)
w

−α
1−α
t ρ

−α
γ(1−α)+1

+ K̃3
1

β̃2

r̃2
s+1I

(
−α

log r̃2
logϕ

)
w

−α
log r̃2
log ϕ

t ρ
−α(1−α)
γ(1−α)+1

log r̃2
log ϕ + K̃4

1

β̃1

r̃1
s+1I

(
−α

log r̃1
logϕ

)
w

−α
log r̃1
log ϕ

t ρ
−α(1−α)
γ(1−α)+1

log r̃1
log ϕ

= K1 +K2ρ
(
ϕ

1
1−α

)s
I

(
−α

1− α

)
w

−α
1−α
t ρ

−α
γ(1−α)+1 + K̃3

1

β
r̃2

s+1w
−α

log r̃2
log ϕ

t + K̃4
1

β
r̃1

s+1w
−α

log r̃1
log ϕ

t

where we use Lemma 3 and the definition of β̃i = βρ
−α(1−α)

γ(1−α)+1

log r̃i
log ϕ I

(
−α log r̃i

logϕ

)
. We can now write the

Bellman equation for s ≥ s∗(wt):

V (wt, s) = K1 +K2w
−α
1−α
t

(
ϕ

1
1−α

)s
+ K̃3w

−α
log r̃2
log ϕ

t r̃2
s+1 + K̃4w

−α
log r̃1
log ϕ

t r̃1
s+1 =

(ϕs)
1

1−α

(
α

wt

) α
1−α

(1− α)− cf

+ βK1 +K2βρ
(
ϕ

1
1−α

)s
I

(
−α

1− α

)
w

−α
1−α
t ρ

−α
γ(1−α)+1 + K̃3r̃2

s+1w
−α

log r̃2
log ϕ

t + K̃4r̃1
s+1w

−α
log r̃1
log ϕ

t

which yields (after simplification and matching coefficients)

{
K1 = −cf + βK1

K2 = K2βρI
(

−α
1−α

)
ρ

−α

γ(1−α)+1 + (1− α)α
α

1−α
⇔





K1 = −cf
1−β

K2 = (1−α)α
α

1−α

1−βρI( −α

1−α)ρ
−α

γ(1−α)+1

We are then left to solve for K3 andK4 with the following guess

V (wt, s) =
−cf
1− β

+
(1− α)α

α

1−α

1− βρI
(

−α
1−α

)
ρ

−α

γ(1−α)+1

w
−α

1−α

t

(
ϕ

1

1−α

)s
+ K̃3w

−α log r̃2
log ϕ

t r̃2
s+1 + K̃4w

−α log r̃1
log ϕ

t r̃1
s+1

73



Solving forK4: To solve for K4, we are using Lemma 4.

V (s∗(µt), wt) ≤
−cf
1− β

+
(1− α)α

α

1−α

1− βρI
(

−α
1−α

)
ρ

−α

γ(1−α)+1

w
−α

1−α

t

(
ϕ

1

1−α

)s
+ K̃3w

−α
log r̃2
log ϕ

t r̃2
s+1 + K̃4w

−α
log r̃1
log ϕ

t r̃1
s+1

≤ (1− α)α
α

1−α

1− ρβI
(

−α
1−α

)
ρ

−α

γ(1−α)+1

w
−α

1−α

t (ϕs)
1

1−α

where the first equality comes from the fact that V (s,wt) is increasing in s for a given wt and the
second inequality from Lemma 4. Let us divide both sides of this inequality by (ϕs)

1

1−α

V (s∗(µt), wt)

(ϕs)
1

1−α

≤ −cf

1− β

1

(ϕs)
1

1−α

+
(1− α)α

α
1−α

1− βρI
(

−α
1−α

)
ρ

−α
γ(1−α)+1

w
−α
1−α
t + K̃3w

−α
log r̃2
log ϕ

t r̃2

(
r̃2

ϕ
1

1−α

)s

+ K̃4w
−α

log r̃1
log ϕ

t r̃1

(
r̃1

ϕ
1

1−α

)s

≤ (1− α)α
α

1−α

1− ρβI
(

−α
1−α

)
ρ

−α
γ(1−α)+1

w
−α
1−α
t

Since r̃2 < ϕ
1

1−α < r̃1 and ϕ
1

1−α > 1, for s→ ∞ this inequality becomes

0 ≤ 0 +
(1− α)α

α

1−α

1− βρI
(

−α
1−α

)
ρ

−α

γ(1−α)+1

w
−α

1−α

t + 0 + lim
s→∞

K̃4w
−α log r̃1

log ϕ

t r̃1

(
r̃1

ϕ
1

1−α

)s

≤ (1− α)α
α

1−α

1− ρβI
(

−α
1−α

)
ρ

−α

γ(1−α)+1

w
−α

1−α

t

which implies that lims→∞ K̃4w
−α

log r̃1
log ϕ

t r̃1

(
r̃1

ϕ
1

1−α

)s

= 0 and, thus, that K4 = 0 since ϕ
1

1−α < r̃1. We are

thus left to solve for K3 with the guess

V (wt, s) =
−cf
1− β

+
(1− α)α

α

1−α

1− ρβ̃α
w

−α

1−α

t

(
ϕ

1

1−α

)s
+ K̃3w

−α log r̃2
log ϕ

t r̃2
s+1

where β̃α = βI
(

−α
1−α

)
ρ

−α

γ(1−α)+1 .
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Solving forK3: To solve for K3 we are using the Bellman Equation 42 at s∗(wt):

aV (wt, s
∗
t − 1) + bV (wt, s

∗
t ) + cV (wt, s

∗
t + 1) =

= a

((
ϕs∗t −1

) 1
1−α

(
α

wt

) α
1−α

(1− α)− cf

)

+ b

(
−cf
1− β

+
(1− α)α

α
1−α

1− ρβ̃α

w
−α
1−α
t

(
ϕ

1
1−α

)s∗t
+ K̃3w

−α
log r̃2
log ϕ

t r̃2
s∗t +1

)

+ c

(
−cf
1− β

+
(1− α)α

α
1−α

1− ρβ̃α

w
−α
1−α
t

(
ϕ

1
1−α

)s∗t +1

+ K̃3w
−α

log r̃2
log ϕ

t r̃2
s∗t+2

)

=
−cf
1− β

(a(1− β) + b+ c)

+
(1− α)α

α
1−α

1− ρβ̃α

w
−α
1−α
t

(
ϕ

1
1−α

)s∗t (
aϕ

−1
1−α

(
1− ρβ̃α

)
+ b+ cϕ

1
1−α

)

+ K̃3w
−α

log r̃2
log ϕ

t r̃2
s∗t
(
br̃2 + cr̃2

2)

=
−cf
1− β

(1− aβ)

+
(1− α)α

α
1−α

1− ρβ̃α

w
−α
1−α
t

(
ϕ

1
1−α

)s∗t (
ρ− aϕ

−1
1−α ρβ̃α

)

+ K̃3w
−α

log r̃2
log ϕ

t r̃2
s∗t

(
r̃2

β̃2

− a

)

Note that K̃3w
−α

log r̃2
log ϕ

t r̃2
s∗t = K3χ

−(1−α) log r̃2
log ϕ w

−α
log r̃2
log ϕ

t r̃2
s∗t = K3r̃2

−s∗t r̃2
s∗t = K3 and that

(
ϕ

1

1−α

)s∗t
=

χ(1−α) log ϕ
1

1−α

log ϕ w
α log ϕ

1
1−α

log ϕ

t = χw
α

1−α

t . With these in hand it follows

aV (wt, s
∗
t − 1) + bV (wt, s

∗
t ) + cV (wt, s

∗
t + 1) =

=
−cf
1− β

(1− aβ) +
(1− α)α

α

1−α

1− ρβ̃α
χ
(
ρ− aϕ

−1

1−αρβ̃α

)
+K3

(
r̃2

β̃2
− a

)

Note that the above expression is independent of wt. The Bellman Equation 42 at s = s∗t is

−cf
1− β

+
(1− α)α

α

1−α

1− ρβ̃α
w

−α

1−α

t

(
ϕ

1

1−α

)s∗t
+ K̃3w

−α log r̃2
log ϕ

t r̃2
s∗t+1

=
(
ϕs∗t
) 1

1−α

(
α

wt

) α

1−α

(1− α)− cf

+
−cfβ
1− β

(1− aβ) +
(1− α)α

α

1−α

1− ρβ̃α
βχ
(
ρ− aϕ

−1

1−αρβ̃α

)
+K3β

(
r̃2

β̃2
− a

)
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which after simplification yields

−cf
1− β

+
(1− α)α

α
1−α

1− ρβ̃α

χ+K3r̃2

= χα
α

1−α (1− α) − cf +
−cfβ

1− β
(1− aβ) +

(1− α)α
α

1−α

1− ρβ̃α

βχ
(
ρ− aϕ

−1
1−α ρβ̃α

)
+K3β

(
r̃2

β̃2

− a

)

⇔

K3

(
r̃2 − r̃2

β

β̃2

+ βa

)
=

cf
1− β

aβ2 + χα
α

1−α (1− α)

(
1 +

ρβ − ρβaϕ
−1
1−α β̃α)

1− ρβ̃α

− 1

1− ρβ̃α

)

⇔

K3β

(
r̃2

(
1

β
− 1

β̃2

)
+ a

)
=

cf
1− β

aβ2 + χα
α

1−α (1− α)
−ρβ̃α + ρβ − ρβaϕ

−1
1−α β̃α

1− ρβ̃α

⇔

K3 =

cf
1−β

aβ

r̃2
(

1
β
− 1

β̃2

)
+ a

+ χα
α

1−α (1− α)
−ρβ̃α + ρβ − ρβaϕ

−1
1−α β̃α(

1− ρβ̃α

)
β
(
r̃2
(

1
β
− 1

β̃2

)
+ a
)

where β̃α = βI
(

−α
1−α

)
ρ

−α

γ(1−α)+1 . It follows that the value of an incumbent for s ≥ s∗t is

V (wt, s) =
−cf
1− β

+
(1− α)α

α
1−α

1− ρβ̃α

w
−α
1−α
t

(
ϕ

1
1−α

)s
+

cf
1−β

aβ

r̃2
(

1
β
− 1

β̃2

)
+ a

χ
−(1−α)

log r̃2
log ϕ w

−α
log r̃2
log ϕ

t r̃2
s+1

+χα
α

1−α (1− α)
−ρβ̃α + ρβ − ρβaϕ
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or equivalently
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which, after rearranging terms, yields
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Solving for χ: χ is such that the continuation value at s = s∗(wt) is equal to zero. The continuation
value is

aV (wt, s
∗
t − 1) + b+ cV (wt, s

∗
t + 1) =
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The last expression is independent of wt. Thus, to solve for χ we just need to equate the above to
zero and this yields

χ =

cf
1−β

(
1− aβ

r̃2
(

1

β
− 1

β̃2

)
+a

r̃2
β̃2

)

(1−α)α
α

1−α

1−ρβ̃α

(
ρ+ −ρβ̃α+ρβ−ρβaϕ

−1
1−α β̃α

β
(
r̃2
(

1

β
− 1

β̃2

)
+a
) r̃2

β̃2

)

which completes the proof. �

C Data Appendix

In this appendix, we describe the different data sources used in the paper. The first data source is
the Business Dynamics Statistics (BDS), giving firm counts by size and age on the universe of firms
in the US economy. Compustat data contains information on publicly traded firms. Finally, we use
publicly available aggregate time series.

C.1 BDS data

According to the US Census Bureau, the Business Dynamics Statistics (BDS) provides annual mea-
sures of firms’ dynamics covering the entire economy. It is aggregated into bins by firm characteris-
tics such as size and size by age. The BDS is created from the Longitudinal Business Database (LBD),
a US firm-level census. The BDS database gives us the number of firms by employment size cat-
egories (1-5, 5-10, 10-20,20-50,50-100,100-250,500-1000,1000-2500,2500-5000,5000-10000) for the
period ranging from 1977 to 2012. Note that the number of firms in each bin is the number of
firms on March 12 of each year. We also source from the BDS the number of firms of age zero by
employment size. We call the latter entrants.

We compute the empirical counterpart of the steady-state stationary distribution in our model based
on this data, by taking the average of each bin over years. We do this for the entrant and incumbent
distributions. We then estimate the tail of these distribution following Virkar and Clauset (2014). We
find that the tail estimate for the (average) incumbent size distribution is 1.0977 with a standard-
deviation of 0.0016. For entrants, this estimate is 1.5708 with standard deviation of 0.0166. To
compute the entry rate, we divide the average number of entrants over the period 1977-2012 by
the average number of incumbents. Over this period there are 48,8140 entrant firms and 4,477,300
incumbent firms; the entry rate is then 10.9%.

To perform the exercise described in Section 5.4, we need to compute the model counterpart of the
time t firm size distribution. According to Theorem 1, these are deviations of the firm size distri-
bution around the (deterministic) stationary firm size distribution. However, in the BDS data, the
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trend of each bin is different. We thus HP-filter each bin of the BDS data with a smoothing pa-
rameter λ = 6.25. Each bins is thus decomposed µBDS

s,t = µBDS−trend
s,t + µBDS−dev

s,t where µBDS
s,t is

the original bin value, µBDS−trend
s,t is its HP-trend and µBDS−dev

s,t is the HP-deviation from trend. The

empirical counterpart of time t firm size distribution in our model is thus µBDS−average
s + µBDS−dev

s,t

where µBDS−average
s is the average of bins s over the period 1977-2012. We then use Equations 1, 3

and 12 to compute the time series for aggregate TFP, Yt and σ2
t

T 2 which we plot in Figure 6 along with
data aggregate time series describe below.

C.2 Compustat

The Compustat database is compiled from mandatory public disclosure documents by publicly
listed firm in the US. It is a firm-level yearly (unbalanced) panel with balance sheet information.
Apart from firm-level identifiers, year and sector (4 digit SIC) information, we use two variables from
Compustat: employment and sales. We use data from the year 1958 to 2009. Sales is a nominal vari-
able. We deflate it using the price deflator given by the NBER-CES Manufacturing Industry Database
for shipments (PISHIP) in the corresponding SIC industry.

Using this dataset, we estimate tail indexes following Gabaix and Ibragimov (2011), performing a log
rank-log size regression on the cross-section of firms each year. Our measure of size is given by the
number of employees. We compute tail estimates for firms above 1k, 5k, 10k, 15k and 20k employees.
We then HP-filter the resulting time-series of tail estimates (with a smoothing parameter of 6.25).

For each year, we also compute the cross-sectional variance of real sales and then HP-filter the time
series using a smoothing parameter of 6.25.

C.3 Aggregate Data

The aggregate data comes from two sources. We take quarterly time series of aggregate TFP and
Output from Fernald (2014). For the exercise in Section 5.4, since the BDS data are computed on
March 12 of each year, we compute the average over 4 quarters up to, and including, March. For
example, for the year 1985 we compute the average of 1984Q2, 1984Q3, 1984Q4 and 1985Q1. We do
this for TFP and Output before HP-filtering the resulting time series with a smoothing parameter of
6.25. The other source for annual time series on aggregate output is taken from the St-Louis FED.
We use this series for the correlations reported in Table 4, either after HP-filtering with smoothing
parameter 6.25 or by computing its growth rate.

For the results in Table 5, we estimate a GARCH(1,1) on the de-meaned growth rate of both aggregate
TFP and output, both at a quarterly frequency. The source for this data is Fernald (2014). We take the
square of 4 quarter-average of the conditional standard deviation vector resulting from the estimated
GARCH. We then HP-filter these series with a smoothing parameter of 6.25.
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C.4 Robustness Check

Sample Firms with more than 1k 5k 10k 15k 20k
Model Correlation in level −0.50

(0.000)
−0.71
(0.000)

−0.64
(0.000)

−0.57
(0.000)

−0.48
(0.000)

Correlation in growth rate −0.11
(0.000)

−0.35
(0.000)

−0.41
(0.000)

−0.42
(0.000)

−0.44
(0.000)

Data Correlation in (HP filtered) level −0.36
(0.005)

−0.17
(0.20)

−0.34
(0.008)

−0.51
(0.000)

−0.46
(0.000)

Correlation in growth rate −0.29
(0.030)

−0.21
(0.114)

−0.33
(0.011)

−0.43
(0.001)

−0.38
(0.004)

Table 6: Correlation of tail estimate with aggregate output.

NOTE: The tail in the model is estimated for simulated data based on our baseline calibration (cf. Table 2) for an economy
simulated during 20,000 periods. The tail in the data is estimated on Compustat data over the period 1958-2008. The
aggregate output data is from the St-Louis Fed.

(1) (2) (3)
IQR of Real Sales STD of Pdy (Durables) IQR of real sales

(Compustat) (Kehrig 2015) (Bloom et al. 2014)
Aggregate Volatility in TFP growth 0.2532

(0.0825)
0.3636
(0.0269)

0.3583
(0.030)

Aggregate Volatility in GDP growth 0.1911
(0.1932)

0.2923
(0.079)

0.3504
(0.034)

Table 7: Correlation of Dispersion and Aggregate Volatility

NOTE: In this table, we display the correlation of various measures of micro-level dispersion with two measures of aggre-
gate volatility. Aggregate volatility is measured by the fitted values of an estimated GARCH on growth rates of TFP and
output. Both are sourced from Fernald (2014) (see description above). In column (1) the Inter Quartile Range (IQR) of real
sales is computed using Compustat data from 1960 to 2008 for manufacturing firms. Nominal values are deflated using the
NBER-CES Manufacturing Industry Database 4-digits price index. In column (2) we take the establishment-level median
standard deviation of productivity (levels) from Kherig (2015) who, in turn, computes it from Census data. In column (3)
we take the establishment-level IQR of sales growth from Bloom at al. (2014).

D Numerical Appendix

In this numerical appendix, we first describe the numerical solution algorithm and its implemen-
tation and assess the accuracy of the solution. We then present a set of results obtained under an
alternative calibration strategy.

D.1 Solution Method and Accuracy

In this appendix, we describe the numerical algorithm used to solve the model described in the pa-
per. Recall that given the Equation 2, At is a sufficient statistic to describe the wage. Using Equation
15, it is clear that the law of motion ofAt is a function of past values ofAt,Et(ϕ), and σt. As described
in the main text, we are assuming that firms do not take into account the time-varying volatility of
At and form their expectations by assuming that Et(ϕ)

At
, OA

t

At
and σt

At
are constant and equal to their

steady-state value. It follows that, from the perspective of the firms, At only depends on its past
value.40

40We also explored the alternative assumption that firms form their expectations by assuming that Et(ϕ), OA
t and σt are

constant and equal to their steady-state value. With this alternative assumption, the policy function is barely affected and
all the results in the paper are quantitatively very similar.
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Figure 7: Policy Function and stochastic Domain of At

NOTE: The blue (dash-dot) line is the policy function s∗(A); For a 20 000 period simulation of the model, the vertical black

(solid) lines are the minimum and maximum of log(At) over this sample; the black (dashed) line is the mean of log(At)

over this sample; each of the vertical red (transparent) lines represent log(At) for a given time t.

It follows that the value of being a incumbent only depends onA. To solve the model we simply have
to solve for the following Bellman equation:

V (A,ϕs) = π∗(A,ϕs) + max



0, β

∫

A′

∑

ϕs′∈Φ
V (A′, ϕs′)F (ϕs′ |ϕs)Υ(dA′|A)





where Υ(.|A) is the conditional distribution of next period’s state A′, given the current period state
A. This distribution is given by Equation 15 with Et(ϕ)

At
= E(ϕ)

A , OA
t

At
= OA

A and σt

At
= σ

A . We also
assume that the shock εt+1 in this last equation follows a standard normal distribution, which is a
valid approximation as shown in the Theorem 3 in Appendix B.5.

To solve for the above Bellman equation we are using a standard value function iteration algorithm
implemented in Matlab with the Compecon toolbox developed by Miranda and Fackler (2004). To
do so, we define a grid for A (in logs) along with productivity grid of the idiosyncratic state space
Φ described in the paper. We then form a guess on the value function as a function of log(A) and
log(ϕs), and plug it to the right hand side of the above Bellman equation. This is repeated until
convergence. This algorithm converges to the solution of the above Bellman equation and allows
us to compute the policy function s∗(A). Figure 7 displays this policy function computed from the
value function iteration procedure described above. In this figure, we also plot the ergodic domain
of log(At) for a 20 000 period simulation of our model (using the results in Theorem 1). We observe
that the value of log(At) is concentrated on the part of the state space where the policy function s∗ is
constant. Note this is a numerical result rather than an assumption.

Given that firms solve their problem under the perceived law of motion given by Assumption 3, it is
important to see if there is an important deviation of this perceived law of motion from the actual law
of motion described in Theorem 3. To see this, we plot the two implied aggregate TFP time series for
a simulation path of our model in Figure 8. We observe that the actual (blue solid) and the perceived
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Figure 8: A simulated path for aggregate TFP under the actual and perceived law of motions.
NOTE: The red (dashed) line is the actual times series of aggregate TFP (by Theorem 3); The blue (solid) line is the time

series of aggregate TFP implied by Assumption 3. The correlation between these two series is 0.9963.

(red dashed) series follow each other closely. Furthermore, on a 20 000 periods simulated path, the
correlation between these two series is 0.9963.

D.2 Alternative Calibration

In this section, we explore an alternative calibration strategy. Instead of fixing the value ofα, the span
of control parameter, and then matching the idiosyncratic volatility of productivity σe, we are now
matching the volatility of idiosyncratic sales while fixing the volatility of idiosyncratic productivity in
the steady-state. To do so, we calibrate the value of α rather than fix it. For the idiosyncratic volatility
of sales, we choose a 35% target following Gabaix (2011) and Comin and Mulani (2006). The targets
of this alternative calibration are summarized in Table 8, while the implied parameters can be found
in Table 9. Note that the calibrated α is now equal to 0.77. Figure 9 plots the firm size distribution
and the entrant distribution in the steady-state of the model against their counterpart in the data.

The results are qualitatively unchanged. If anything, the implied aggregate volatility is stronger as
the reallocation mechanism is weaker. We reproduce here the business cycle statistics (Table 10)
described in Section 5.2.2, the impulse response to a one standard deviation negative shock on the
largest firm (Figure 10) described in Section 5.2.3, and the variation of the counter cumulative dis-
tribution function for a simulated path (Figure 11) described in Section 5.3.

Statistic Model Data References

Entry Rate 0.850 0.109 BDS firm data
Sales Vol. 0.35 0.2− 0.4 See main text

Tail index of Firm size dist. 1.097 1.097 BDS firm data
Tail index of Entrant Firm size dist. 1.570 1.570 BDS firm data

Share of Employment of the largest firm 0.17% 1% Share of Wall-Mart
Number of Firms 4.5× 106 4.5× 106 BDS firm data

Table 8: Targets for the calibration of parameters (alternative calibration)
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Parameters Value Description

a 0.5980 Pr. of moving down
c 0.4020 Pr. of moving up
S 41 Number of productivity levels
ϕ 1.0868 Step in pdty bins
Φ {ϕs}s=1..S Productivity grid
γ 2 Labor Elasticity
α 0.77 Production function
cf 1.0 Operating cost
ce 0 Entry cost
β 0.95 Discount rate
M 3.6435 ∗ 107 Number of potential entrants
G {MKe(ϕ

s)−δe}s=1..S Entrant’s distr. of the signal
Ke 0.7652 Scale parameter of the distr. G

δe(1− α) 1.570 Tail parameter of the distr. G

Table 9: Alternative calibration
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Figure 9: Counter Cumulative Distribution Functions (CCDF) of the firms size distribution of incum-
bents (left) and entrants (right) in the model (blue solid line) against data (circles).
NOTE: Black filled circle report the CCDF of firm size distribution for less than 10000 employees in the BDS. The red circle

are tabulation from Compustat for firms with more than 10000 employees assuming that for this range the distribution of

firms in Compustat is similar to the one of firms in the whole economy.
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Model Data
σ(x) σ(x)

σ(y) ρ(x, y) σ(x) σ(x)
σ(y) ρ(x, y)

Output 0.54 1.0 1.0 1.83 1.00 1.00
Hours 0.36 0.66 1.0 1.78 0.98 0.90
Aggregate TFP 0.26 0.48 1.0 1.04 0.57 0.66

Table 10: Business Cycle Statistics

NOTE: The model statistics are computed for the alternative calibration (cf. Table 9) for an economy simulated for 20,000

periods. The data statistics are computed from annual data in deviations from an HP trend. The source of the data is

Fernald (2014). For further details refer to Appendix C.

Figure 10: Impulse response to a one standard deviation negative productivity shock on the largest
firm.
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Figure 11: Variation of the Counter Cumulative Distribution Function (CCDF) in simulated data (left)
and in the BDS data (right).
NOTE: The simulated data are the results of a 25000 periods sample (where the first 5000 are dropped). For the BDS data,

we compute the CCDF for each year on the sample 1977-2008. The dashed black line is the mean of each sample.
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