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Abstract

This paper analyzes the �ow of intermediate inputs across sectors by adopting a net-

work perspective on sectoral interactions. I apply these tools to show how �uctuations

in aggregate economic activity can be obtained from independent shocks to individual

sectors. First, I characterize the network structure of input trade in the U.S.. On the

demand side, a typical sector relies on a small number of key inputs and sectors are

homogeneous in this respect. However, in their role as input-suppliers sectors do di¤er:

many specialized input suppliers coexist alongside general purpose sectors functioning

as hubs to the economy. I then develop a model of intersectoral linkages that can re-

produce these connectivity features. In a standard multisector setup, I use this model

to provide analytical expressions linking aggregate volatility to the network structure

of input trade. I show that the presence of sectoral hubs - by coupling production

decisions across sectors - leads to �uctuations in aggregates.
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1 Introduction

Comovement across sectors is a hallmark of cyclical �uctuations. A long-standing line of

research in the business cycle literature asks whether trade in intermediate inputs can link

otherwise independent technologies and generate such behavior. The intuition behind this

hypothesis is clear: factor demand linkages can provide a source for comovement, as a shock

to the production technology of a general purpose sector - say, petroleum re�neries - is likely

to propagate to the rest of the economy. In this way, cyclical �uctuations in aggregates are

obtained as synchronized responses to changes in the productivity of narrowly de�ned but

broadly used technologies.

Though intuitive, this hypothesis is faced with a strong challenge: by a standard diversi-

�cation argument, as we disaggregate the economy into many sectors, independent sectoral

disturbances will tend to average out, leaving aggregates unchanged and yielding a weak

propagation mechanism; see the discussion in Lucas (1981) and the irrelevance theorems of

Dupor (1999)1.

In this paper, I take on this challenge by adopting a network perspective on sectoral

interactions. From this vantage point, I provide answers to the following questions. First,

given the availability of detailed input use data, can we identify the main features of the

network structure of linkages across sectors? Second, can we specify models of sectoral input

linkages that are able to mimic this connectivity structure and are still amenable to use in

standard multi-sector models? If so, can we use these models to derived analytical results

linking the variability of aggregates to the network structure of input �ows? Finally, under

what assumptions on the network structure can we render ine¤ective the shock diversi�cation

argument of the previous paragraph?

The argument linking the answers to these questions is the following: when determining

whether a sectoral shock propagates or not, the number of sectoral connections originating

from the source of the shock is the crucial variable to consider. Furthermore, if the number of

1For the most part, the answer to this challenge has been in the empirical vein. Long and Plosser (1983,

1987), Norrbin and Schlagenhauf (1990) and Horvath and Verbrugge (1996) document comovement of sectoral

output growth series through vector autoregressions. They all add that the explanatory power of a common,

aggregate shock is limited on its own and diminished once sector speci�c shocks are entertained. Shea (2002)

and Conley and Dupor (2003) go further and devise ways of testing - and rejecting- the hypothesis that

sectoral comovement is being driven by a common shock. Concurrently, the strategy of using actual input-

output data in large scale multisector models generates aggregates that are quantitatively similar to data

and to one-sector real business cycle models; see Horvath (2000).
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connections varies widely across sectors, some shocks will propagate throughout the economy

and persist through time while others will be short-lived and only propagate locally. As a

consequence, economies where every sector relies heavily on only a few sectoral hubs - general

purpose input suppliers - will show considerable conductance to shocks in those technologies.

Conversely, as the structure of the economy is more diversi�ed, di¤erent sectors will rely on

di¤erent technologies and exhibit only loosely coupled dynamics. The answer to the law of

large numbers arguments in Lucas and Dupor thus lies in understanding and modelling this

tension between specialization and reliance on general purpose technologies.

A simple example - a particular case of the setup in Shea (2002)- helps build intuition

for this tension2. Consider an economy where a representative household derives log utility

over M sectoral goods and linear disutility from time spent working. Each of the M sectors

produce a di¤erent good that can either be allocated to �nal consumption or as an interme-

diate input to the production of other goods. In particular, let the production side of this

economy be given byM; Cobb-Douglas, constant returns to scale production functions, each

combining labor and a distinct set of intermediate inputs. Finally, assume that each sector

is subject to a productivity shock of variance �2 but insist that these shocks are independent

realizations across sectors.

Whether these shocks will then propagate through input linkages and lead to movements

in aggregates depends on the network structure of these linkages. To see this, consider the

two following abstract, and rather extreme, cases. Fix anM and contrast an economy where

only one sector is a material input supplier to all other sectors with an economy where

every sector supplies to all other sectors in the economy. These two polar cases for the

pattern of input-use relationships in an economy map exactly into very standard network

representations, where the vertex set is given by the set of sectors in the economy and a

directed arc from vertex (sector) i to vertex j represents a intermediate input supply link.

2This setup, along with all the results pertaining to it, is carefully spelled out in Section 3 of the paper.
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Figure 1: Complete (l.h.s.) and Star (r.h.s.) input-supply structures for a 5 sector

economy.

Thus an economy where each sector is an input supplier to every other sector in the

economy can be represented by a complete network, where for any two pair of vertices there

is a directed arc from one to the other. Likewise, an economy where there is only one

material input supplier maps directly into a star network, where one vertex acts as a hub

with directed arcs from this vertex to all other vertices. An intermediate case is given by a

N�star network, where N out of M , sectors in the economy act as material input suppliers

to every sector and the remaining ones are solely devoted to �nal goods production. Figure

1 depicts intersectoral input relations under these two extreme cases - complete and star -

for a �ve sector economy.

In order to focus on the impact of heterogeneity along the extensive margin of intersectoral

trade, assume further that, each sector, regardless of what its particular input list is, uses

its inputs in equal proportions. Then, de�ning aggregate volatility, �2Y ; as the variance of

average log output, I show that �2Y _ �2

M
for the case of complete networks while �2Y _ �2

N

for the case of N�star networks.
Thus, aggregate volatility with complete intersectoral networks echoes Dupor�s and Lu-

cas�law of large numbers argument: aggregate volatility scales with 1=M . To understand

how e¤ective the shock diversi�cation argument is notice the following: holding sectoral

variance �xed as I move from a �ve sector economy to a �ve hundred sector economy, ag-

gregate volatility will be a hundred times smaller. Conversely, to recover an aggregate �2Y of

the order of two percent in a �ve hundred sector economy, would require stipulating sectoral

volatilities, �2; to be �ve hundred times larger, an unreasonable magnitude at any time scale.

However, if there are only N sectors acting as intermediate input suppliers, the diversi-

�cation of shocks argument underlying law of large number arguments only applies to those
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sectors. Thus, in an economy where the e¤ective number of input suppliers is small, the law

of large numbers will be postponed relative to that of Dupor (1999): aggregate volatility

now scales with 1=N . This is Horvath�s (1998) argument: limited sectoral interaction - of a

very particular form - will give rise to greater aggregate volatility from sector speci�c shocks.

The di¢ culty with this result is that the modeler is now left to specify, for each M; what is

the number of input suppliers in an economy; N . From input-output data, Horvath (1998)

argues that N - the number sectors with full rows in input-output matrices - grows slowly

with M : Horvath argues for an N of order
p
M . This would now yield a ten fold decrease

in aggregate variability as we move from �ve to �ve hundred sectors.

In this way, two very particular assumptions on the network structure of intersectoral

trade generate predictions on the variability of aggregates that di¤er by an order of magni-

tude. This means that �nding a better way to model networks of input trade can not only

help solve this controversy but also has the potential of o¤ering a theory where reasonable

magnitudes of sectoral volatility yield non-trivial aggregate volatility. Mechanically, we need

only a theory of intersectoral connectivity that yields aggregate volatility decaying withM��;

where � is close to zero. This paper does just this by going beyond these two extreme cases

and building a model of sectoral interactions on a network. Figure 2 depicts the starting

point of the analysis. It shows a considerably more intricate network of intersectoral input

�ows: that of the U.S. economy in 1997.

Each dot - or vertex - corresponds to a sector de�ned at the NAICS 4-6 digit level

of disaggregation in the BEA detailed commodity-by-commodity tables, for a total of 474

sectors. Each link in the �gure represents an input transaction between sector i to sector j,

provided sector i supplies more than 5% of sector j total intermediate input purchases3.

3I exclude loops from the network for presentation purposes. Loops correspond to intrasectoral trade and

are a well documented feature of detailed input use-matrices (see for example Jones, 2010b).
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Figure 2: Intermediate input �ows between sectors in the U.S. economy in 1997. Each

vertex corresponds to a sector in the 1997 benchmark detailed commodity-by-commodity

direct requirements matrix (Source: BEA). For every input transaction above 5% of the

total input purchases of the destination sector, a link between two vertices is drawn.

From this vantage point, Section 2 in the paper o¤ers a two-pronged characterization

of the structure of input �ow data by taking into consideration the direction in each of

these links. Thus, by considering links from the perspective of the destination vertex, I

can analyze sectors in their role as input-demanders. I �nd that sectors are homogeneous

along this dimension: the typical sectoral production technology relies on a relatively small

number of key inputs and sectors do not di¤er much in this respect. This is the upshot of

specialization occurring at the level of narrowly de�ned production technologies.

However, looking at the source vertices of these links, another feature emerges: extensive

heterogeneity across sectors in their role as input suppliers. In the data, highly specialized

input suppliers - say, for example, optical lens manufacturing - coexist alongside general

purpose inputs, such as iron and steel mills or petroleum re�neries. Speci�cally, I characterize

the empirical out-degree distribution of input-supply links - giving the number of sectors to

which any given sector supplies inputs to - as a power law distribution. What makes this

power law parameterization attractive is the following argument: the upshot of fat-tails,

characteristic of power law degree distributions, is that a small, but non-vanishing, number
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of sectors will emerge as large input suppliers - or hubs - to the economy.

In Section 3, I construct a network model of intersectoral linkages that is able to incorpo-

rate these two �rst order-features of the data: sparse and homogeneous input demand and

strongly heterogenous input supply technologies. Returning to the static multisector setup

described above, I then show that whenever the network of input linkages incorporate these

two features convergence of aggregate volatility to zero can be slowed down dramatically. In

particular, I show that in this setup �2Y _ �2
�
1
M

� 2��4
��1 where � 2 (2; 3) is the tail parameter

on the power law distribution of input-supply linkages. Given the empirical characteriza-

tion of Section 2, � = 2:1 seems to be a good description of actual input-use data. Thus,

�2Y _ �2
�
1
M

�0:18
. This means that going from a �ve to a �ve-hundred sector economy - while

keeping sector-level volatility constant - now implies that aggregate volatility is reduced only

two-fold. Alternatively, we need only that the typical sectoral volatility of narrowly de�ned

sectors be double than that of more aggregated sectors for aggregate volatility to remain

constant across these two economies.

The remainder of the paper (Section 4) is devoted to verifying that these claims still hold

in standard, dynamic, multisector setups. In particular, I show that the decay character-

ization above extends to the auto-covariance function of aggregate output growth. I then

present some quantitative explorations in this class of models and claim that the mecha-

nisms described in this paper are quantitatively relevant: a large scale multisector model

with independent shocks can generate aggregate volatility that is about two-thirds of that

observed in data.

The paper is closest to the contribution of Gabaix (2010) and to the independent, but sub-

sequent, work by Acemoglu, Ozdaglar and Tahbaz-Saleh (2010). Regarding Gabaix (2010),

this paper is closely related to his characterization of aggregate volatility decay as a function

of heterogeneity in the underlying production units. In contrast to Gabaix however, this

is not the result of some �rms accounting for a non-trivial share of aggregate output and

thus, for a non-trivial share of aggregate volatility. Rather the argument here is based on

the shock conductance implied by the interlocking of technologies in a networked economy.

In other words, the emphasis here is on propagation rather than aggregation. These two

approaches should therefore be seen as a complementary. Acemoglu et al (2010), consider

a networked, static, multisector economy which is very similar to the one discussed earlier

in this introduction and expanded further upon in Section 3. They use a di¤erent approach

(deterministic graphs, rather than the random graphs setup used here) which allows them

to con�rm the volatility decay behavior discussed above - stated in Proposition 2 of this

7



paper- and then analyze higher-order network e¤ects and the possibility of tail events in the

aggregate. They do not study whether this is still the case in dynamic settings which allow

for richer interactions due to the presence of capital accumulation - as is done here- nor do

they look at the quantitative implications of these settings.

The underlying multi-sector setup that I use is very close to that appearing in Horvath

(1998), Dupor (1999), Shea (2002) and Foerster, Sarte and Watson (2008), all closely related

to the original multisector real business cycle model of Long and Plosser (1983) and the myr-

iad of extensions and applications developed in the literature since. Much of this literature

has used actual input-output data in the calibration of more complicated large-scale multi-

sector equilibrium models with some quantitative success; see Horvath (2000), Kim and Kim

(2006) or Bouakez, Cardia and Ruge-Murcia (2009) for examples of this. This papers asks

what in the nature of input-output data is enabling such results, unexpected in a context of

independent sectoral shocks.

The paper is also close to the spirit of the contributions in Bak et al.(1993) and Scheinkman

and Woodford (1994) by stressing the importance of the structure of input-supply chains in

the transmission of shocks across sectors and, as a consequence, to aggregates. In comparison

with these papers, by placing sectors on a network of input �ows - rather than on a lattice

- I allow for more general, and arguably more realistic, patterns of connections between sec-

tors4. The idea of characterizing input-use relationships through graph-theoretical tools is

not new, albeit it has merited only limited attention5. In the context of traditional input-

output analysis Solow (1952) is, to the best of my knowledge, the �rst reference recognizing

that an input-output matrix can be mapped into a network. These tools have resurfaced

only sporadically in the analysis of static and dynamic input-output systems; see Rosenblatt

(1957), Simon and Ando (1961) or Szydl (1985).

In terms of tools, this paper borrows heavily from recent work on networks and in par-

ticular, random graphs. Newman (2003) and Li et al (2006) o¤er good reviews mapping

out recent theoretical advances and link them to a growing number of applications. Durrett

(2006) and Chung and Lu (2006) provide textbook treatments. In particular, a model of

4Other related setups have been explored in order to generate aggregate �uctuations from micro shocks:

Cooper and Haltiwanger (1990). Jovanovic (1987) and Durlauf (1993) instead focus on the role of production

complementarities across sectors, as does the more recent contribution of Nirei (2005), where this is coupled

with indivisibilities in investment. In turn, Murphy et al. (1989) focus on aggregate demand spillovers.
5This stands in sharp contrast to the recent but burgeoning use of network tools in microeconomics; see

Jackson (2005) for a comprehensive review or Vega-Redondo (2007), Jackson (2008) or Goyal (2009) for

monographs on the topic.
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random graphs with given expected degree sequences, set out in Chung and Lu (2006), forms

the basis for my data-generating process for intersectoral linkages.

2 Network Properties of Input Flow Data

This section conducts an empirical analysis of some network properties of input �ow data.

Throughout, I use detailed Benchmark Input-Output data compiled by the Bureau of Eco-

nomic Analysis, spanning the period 1972-2002. The detailed input-output data yield a �ne

disaggregation of inter-sectoral trade, most sectors corresponding to (roughly) a four digit

S.I.C. de�nition. The data is made available on a �ve year interval.6

In particular, I use the commodity-by-commodity direct requirements tables7 where the

typical (i; j) entry gives the input-share (evaluated at current producers�prices) of (row)

commodity i as an intermediate input in the production of (column) commodity j. Abusing

notation slightly, I use the names commodities and sectors interchangeably throughout the

paper (i.e. I assume that commodity i is produced exclusively by sector i).

I now map this intersectoral input trade data into standard graph theoretical notation.

First, let the set of M sectors in an economy give the set of �xed labels for the vertex set

V
:
= fv1; :::; vMg. Let E be a subset of the collection of all ordered pairs of vertices fvi; vjg;

with vi; vj 2 V . De�ne E by:

f fvi; vjg 2 V 2 : fvi; vjg 2 E if Sector i supplies Sector jg

That is, the edge set E; is given by an adjacency relation, vi ! vj between elements of

the set of all sectors where I allow re�exivity (a sector can be an input supplier of itself).

With the collection V of sectors and input supply relations E; I de�ne sectoral trade linkages

as a directed graph G :

De�nition 1 G = (V;E). G is a directed sectoral linkages graph with vertex set V and edge

set E where each element of E is a directed arc from element i to j .

6Up until 1992, it is based on an evolving a S.I.C. classi�cation whereas the NAICS system was adopted

from 1997 on. See Lawson et al. (2002) for a comparison of the two classi�cation systems and in-depth dis-

cussion of the data. While individual sectors are not immediately comparable between S.I.C. and N.A.I.C.S.,

the network structure of these matrices will be shown to be remarkably stable across classi�cation systems.
7These are not available for all benchmark years but are possible to construct using the available Use and

Make tables following the indications in Shea (1991) or the BEA�s own Input-Output manual (Horowitz and

Planting (2006)).
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A useful representation of a graph is its adjacency matrix, indicating which of the vertices

are linked (adjacent). This will be a key object in the sections below and is de�ned by:

De�nition 2 For a directed sectoral linkages graph G(V;E) de�ne the adjacency matrix

A(G) to be an M �M matrix. If G is a directed graph de�ne the aij element of A(G) to

be 1 if there is a directed edge from sector i to sector j (i.e. if sector i is a material input

supplier of j) and zero otherwise.

I now characterize the extent of heterogeneity along the extensive margins of input de-

mand and input supply. In particular, I consider the number of di¤erent inputs a sector

demands in order to produce- as measured by the columns sums of the adjacency matrix

A(G) - and the number of di¤erent sectors a sector supplies inputs to - as measured by the

row sums of A(G): These count measures can be mapped directly in two graphical objects,

namely the indegree and outdegree sequences of an intersectoral graph G:

De�nition 3 The in-degree dini of a vertex vi 2 V is given by the cardinality of the set

fvj : vj ! vig: The in-degree sequence of a graph G(V;E) is given by fdin1 ; :::; dinMg:

Figure 3 below, displays the empirical density of sectoral indegrees for every detailed

matrix available since 1972. I de�ne the indegree of a sector i as the number of distinct input-

demand transactions that exceed 1% of the total input purchases of that sector. By only

counting as links input transactions above 1% of a sector�s total purchases, I am discarding

very small transactions between sectors and focusing on the main components of the bill of

goods necessary to the production of any given sector. Indeed, following this threshold rule,

I account for about 80% of the total value of intermediate input trade in the US economy in

2002. A similar number obtains for all the other years considered8.

The demand side picture that emerges from Figure 3 is the following: the average sector

in the US economy procures a non-trivial amount of inputs from only a small number of

sectors (' 15) and sectors do not di¤er much along this demand margin. In other words,

the average indegree is small relative to the total number of sectors and most sectors have

an indegree that is close to the average indegree.

8Though arbitrary, this counting convention seems necessary as there is no way of distinguishing between,

say, an input transaction from sector i to j in the order 10 million dollars and an input transaction from

sector k to j two orders of magnitude above. Both get counted as one demand link of sector j. In the

appendix, I show that the characterization presented here holds for alternative thresholds.
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Figure 3: Empirical density of sectoral indegrees. Only input demand transactions above

1% of the demanding sector�s total input purchases are counted. On the l.h.s. is the indegree

density for the 2002 detailed direct requirements IO matrix; on the r.h.s. are the empirical

densities for direct requirements matrices from 1972 through 1997. Source: B.E.A..

This can be seen as a way to encode a �rst-order characteristic of detailed input-output

data already alluded to by Horvath (1998) and Jones (2010a and 2010b): these are sparse

matrices re�ecting specialization occurring at the level of narrowly de�ned production tech-

nologies. Henceforth I�ll dub this feature as homogeneity along the extensive margin of

sectoral demand. This is to be contrasted with the extreme heterogeneity found along the

supply side to which I now turn.

De�nition 4 The out-degree dout
i
of a vertex vi 2 V is given by the cardinality of the set

fvj : vi ! vjg: The out-degree sequence of a graph G(V;E) is given by fdout1 ; :::; doutM g.

Figure 4 documents the heterogeneity in sectoral supply linkages by plotting the empirical

out-degree distribution in the input-use data where again I use the 1% threshold to de�ne

a link. It gives a log-log rank-size plot, i.e. a log-log plot empirical counter-cumulative

distribution of the outdegrees, or the probability, P (k); that a randomly selected sector

supplies inputs to k or more sectors9.

9The construction of these plots is standard: �rst, rank all sectors according to the total number of

sectors they supply inputs to. Now plot the log of the out-degree of each sector (in the x-axis) against its

log rank (in the y-axis). To interpret the plot it is useful to notice the following: if I rank sectors then, by
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Figure 4: Counter-cumulative outdegree distribution from direct requirements detailed

tables. Only input demand transactions above 1% of the demanding sector�s total input

purchases are counted. On l.h.s is the 2002 data. The r.h.s. displays 1972 through 1997

data where I normalize the sectoral outdegree douti by the total number of sectors in each

year. Source: B.E.A.

Given that every matrix, from 1972 through 1997, di¤ers slightly in its dimensions (i.e.

in the number of sectors considered), for every year through 1997, I normalize sectoral

outdegrees by the total number of sectors in the input-use matrix. This enables me to

compare features of the distributions across di¤erent input-use matrices by standardizing

the x-axis in the r.h.s of Figure 4.

The apparent linearity in the tail of the (countercumulative) outdegree distribution in

log scales is usually associated with a power law distribution10. To see this formally, let

P (k) =
PM

k0=k pk0 be the countercumulative distribution of outdegrees, i.e. the probability

that a sector selected at random from the population supplies to k or more sectors. The

number of sectors supplied (i.e. the outdegree), k, follows a power law distribution if, the

p.d.f. pk (giving the frequency of sectors that supply to exactly k sectors in the economy) is

de�nition, there are i sectors that supply inputs to a number of sectors that is greater or equal than that

of the ith�largest sector. Thus dividing the sector�s rank i by the total number of sectors (M) gives the
fraction of sectors larger than i.
10Which is also a typical feature of the �rm size distribution (see, for example, Axtell (2001), Luttmer

(2007) or Gabaix (2010)).
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given by:

pk = ck�� for � > 1, and k integer, k � 1

where c is a positive constant and � is the tail index: Well-known properties of this dis-

tribution are that for 2 � � < 3; k has diverging second (and above) moments11 while for

1 < � < 2; k will have diverging mean as well. An estimate on the value of the tail parameter,

�, can in principle be obtained by running a simple least squares regression of the empirical

log-CCDF on the log-outdegree sequence (or its normalized counterpart). However, Clauset,

Shalizi and Newman (2009) show that least squares methods can produce substantially in-

accurate estimates of parameters for a power-law distribution. Hence, I follow Clauset et al

(2009) in implementing Hill-type MLE estimates of b� for the tail of the distribution (i.e. using
all observations on or above some endogenously determined minimum degree) obtained for

every year. I also report the corresponding standard errors and the number of observations

in the tail12.

1972 1977 1982 1987 1992 1997 2002b� 2.22 2.31 2.30 2.03 2.01 2.17 2.05

s :e:(b�) 0.22 0.21 0.22 0.16 0.14 0.17 0.13

N_tail 72 81 68 132 121 93 112

M 483 523 527 509 478 474 417

Table 1: MLE estimates b�, their standard errors ( s:e:(b�)); the number of observations
used to estimate the tail parameter (N_tail) and the total number of sectors (M) for each

year from 1972-2002

The straight lines in Figure 5 show the MLE �t implied by b� = 2:1 (the average estimate
across years is 2.14). From the discussion above, this value of the tail parameter implies a

strong fat tailed behavior where the variance is diverging with the number of sectors. This

can be taken as a parametric characterization of another feature of input-use matrices already

11Though in any �nite sample a �nite variance can be computed, what this means is that the variance

diverges to +1 as the total number of sectors grows larger. (see Newman, 2003 and 2005, Li et. al., 2006

and Gabaix 2009, for useful reviews and references therein)
12Simple OLS estimates of � or their modi�ed version -as proposed in Gabaix and Ibragimov (2009) -

with an exogenously determined number of sectors on the tail (set at 20% of the number of sectors) lead to

very similar point estimates. The appendix shows that when di¤erent cuto¤ rules are used to de�ne a link,

similar numbers obtain. See for, example, Brock (1999), Mitzenmacher (2003) or Durlauf (2005) for further

discussions on the di¢ culty of identifying power laws in data.
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remarked in Horvath (1998) and Jones (2010a and 2010b): as we disaggregate the economy

into �ner de�nition of sectoral technologies, large input-supplying sectors do not vanish.

In other words, at the most disaggregated level of sectoral input trade, the distribution of

input-supply links is fat tailed.

3 Modelling Networked Sectoral Linkages

When modelling production in a multi-sector context, explicitly accounting for the �ows

of inputs across sectors entails specifying both a list of intermediate inputs needed for the

production of any given sector and the intensity of use of each particular intermediate input

in that list. In the particular setting where gross output production functions are Cobb-

Douglas, this means specifying the cost shares of intermediate inputs and setting to zero

these parameters when a particular input is not required for the production of a given good.

According to the analysis of the previous section, one can characterize the zero patterns of

these lists as restrictions on the network structure of linkages. This section �rst shows how

to incorporate the two �rst order network features isolated above in the simplest multisector

setup possible. I then show, analytically, how aggregate volatility depends on the network

structure of intersectoral linkages.

3.1 A Static Multisector Economy

Consider the following static multisector economy, a particular case of the setup presented

in Shea (2002). There is a representative household whose utility is a¤ected by the levels of

consumption of M goods, fCjgMj=1; and total hours of work ; L;to be shared among the M
production activities. Assume log preferences over M di¤erent goods, with weights given by

f�jgMj=1, and linear disutility of labor.

U(fCj; LjgMj=1) =
MX
j=1

�j log(Cj)� L; (1)

with
P
j

�j = 1 and �j > 0;8j; (2)

and
P
j

Lj � L (3)

Each of the M productive units, or sectors, produce a di¤erent good that can either be

allocated to �nal consumption (by the household) or as intermediate goods to be used in
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the production of other goods. This is just a static version of the production technologies

introduced in Long Plosser (1983). In particular, assume production functions are of the

Cobb-Douglas, constant returns to scale variety:

Yj = ZjL
�j
j

Y
i2 �Sj

M

ij
ij (4)

1 = �j +
X
i2 �Sj


ij; �j > 0; j = 1; :::;M (5)

Zj = exp("j); "j s N(0; �2j) (6)

where Mij is the amount of good i used as an intermediate input in the production of

sector j. Zj is a Hicks-neutral, log-normal, productivity shock to good j technology, to

be drawn independently across sectors. The �supply-to�set �Sj completes the description of

technology in this simple economy. It gives, for every sector j; the list of goods that are

necessary as inputs in the production of good i. Finally, market clearing implies that:

Yj = Cj +
X
i:j2 �Si

Mji, j = 1; :::;M (7)

It is a standard exercise to solve for the competitive equilibrium of this economy; see Shea

(2002). Substituting the equilibrium input choices into the production function, simplifying

and taking logarithms yields, in vector notation:

y = �+(I � �)�10" (8)

where � is an M-dimensional vector of constants dependent on model parameters only13.

The pair of vectors M-dimensional vectors (y; ") give, respectively, the log of equilibrium

output and the log of the productivity shock for every sector in the economy. I is the

M �M identity matrix and � is an M �M input-use matrix with typical element 
ij � 0.
The jth column sum of � gives the cost share of intermediate inputs for sector j:


j =
MX
i=1


ij

13The setup in Shea (2002) also considers preference shocks by making the preference weights on each good

stochastic. Shea then shows that the competitive equilibrium solution will be given by (8) plus an additional

random vector in the right hand side of expression re�ecting demand shocks propagating through the input

output matrix. In the simpli�ed setup of the current paper this shocks are not present and therefore this a

zero vector.
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where 
j < 1 for all j, such that the M �M matrix (I � �)�1 is well de�ned14. Thus, in
this simple setup, independent technological shocks at the sectoral level propagate through

the input-use matrix downstream15, a¤ecting the costs of input-using sectors and potentially

in�uencing aggregate activity. Henceforth, the analysis focuses on the interplay between the

network structure of intermediate input use - the structure of the input matrix, �- and the

propagation of sectoral shocks, as given by the equilibrium expression (8).

The following Lemma is key for the rest of the analysis in that it yields a simple factoriza-

tion of the input-use matrix � into the product of two square matrices: a binary adjacency

matrix A(G), giving the structure of intersectoral linkages in the economy - de�ning who

trades with whom - and a diagonal matrix D
 setting the scale of input transactions between

two sectors by de�ning the level of the cost shares for the non-zero elements of �(G).

Lemma 1 Assume that, for each sector j = 1; :::;M; 
ij = 
kj; for all inputs i and k

necessary to the production of output in sector j; that is for all pairs 
ij; 
kj 6= 0. Then, the
input-use matrix � is given by:

�(G) = A(G)D


where A(G) is a binary adjacency matrix representation of the intersectoral network, and

D
 is a diagonal matrix with a typical element Dkk =

k
dink
, where 
k < 1 and d

in
k > 0 is the

indegree of sector i. Further, for any M and any A; the columns sums of �(G) are given by


j < 1; for j = 1; ::;M and (I � �(G))�1 is well de�ned:

The proof of the Lemma follows immediately from the assumption that 
ij = 
kj for all


ij; 
kj 6= 0: This assumption will be used throughout the paper as it simpli�es considerably
the description of a sectoral technology by imposing homogeneity along the intensive margin

of intersectoral trade - necessary inputs for any given sector have a symmetric role- while

allowing for substantial heterogeneity along the extensive margin - sectors can di¤er in the

number of sectors they demand inputs from or supply inputs to.

14(I � �)�1 exists if every eigenvalue of � is less than one in absolute value. From the Frobenius theory

of non-negative matrices, the maximal eigenvalue of � is bounded above by the largest column sum of �,

maxkf
kgMk=1; which is less than one.
15In general, technology shocks also have e¤ects on upstream demand, by changing the demand of inputs

necessary to produce output and changing sectoral output level. In the current setting, due to the Cobb-

Douglas assumption on preferences and technology, these two e¤ects cancel out exactly; see Shea (2002).
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3.2 Representing Sectoral Linkages as Networks.

The upshot of the assumption in the previous Lemma is that I need only to specify two

objects to be able to de�ne �: a binary matrix announcing who supplies whom and a vector

giving the cost share of intermediate inputs for each sector. The individual cost shares

are then given immediately by the Lemma. In this subsection I show how to construct a

data-generating process for random matrices, A; from which individual members - matrices

of intersectoral linkages, A - are drawn. This will serve as a device to generate lists of

intermediate inputs necessary for the production of each sector. In particular, I show how to

encode the empirical characterization of large-scale input �ow data put forth in the previous

section. I do this by specifying this data-generating process according to three parameters:

a parameter controlling the dimension of the problem - given by the number of sectors M ; a

demand side parameter e; controlling the average connectivity in the economy - given by the

number of inputs the average sector demands - and a supply side parameter �, controlling

the heterogeneity across sectors in their role of input-suppliers.

To construct this data-generating process A(M; e; �) I develop a simple digraph exten-

sion of Chung and Lu�s (2002, 2006) model of undirected random graphs with given expected

degree sequences. Thus, I will be considering realizations of input-supply links (edge sets)

in the following way: for a given number of sectors M; associate to the collection of all

ordered pairs of sectors/vertices fvi; vjg; vi; vj 2 V; an array of independent, Bernoulli ran-

dom variables, Aij; taking values 1 or 0 with probability pij and 1 � pij respectively. Now

de�ne a realization of the intersectoral trade network as an edge set E such that fvi; vjg
is an element of the edge set E, if Xij = 1. Notice that I can then compute the expected

outdegree of any sector as E(douti ) = E(
P

j Aij): =
P

j pij, given independent realizations

of each supply-to link. Similarly the expected in-degree of a sector can be computed as

E(dini ) = E(
P

iAij): =
P

i pij: The remainder of this section shows alternative ways to

parameterize these sectoral linkage probabilities pij.

To achieve this, for a given M; associate a weight sequence e :
= fe1; :::; eMg to the collec-

tion of sectoral labels, such that ei 2 [0;M ]: Now, for each possible ordered pair of sectors
fvi; vjg 2 V 2 de�ne the probability of having a directed arc from vi �! vj as

pij
:
=

ei
M
, 8j 2 V (9)

This encodes: i) a sector with higher weight, ei; will have a higher probability to supply

every sector in the economy and ii) for any given j; the probability of sector i being its input
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supplier depends only on the label of sector i and is thus not responsive to the label of j16.

These are a strong assumptions in that when describing whether an input trade relationship

exists or not, both the identity of the supplying and that of demanding sector -label j�
should matter. E¤ectively, this reduces the problem of how to specify input-linkages for

every pair of sectors to a simpler problem of distinguishing sectors by how likely they are

to be general purpose suppliers (i.e. sectors that have an ei close to M). However, its

tractability yields two immediate results. First, for a given M , the expected out-degree of a

sector i; E (d outi ); will be given by:

E (d outi ) =
X
j

pij= e i, i = 1 ; :::;M (10)

Second, for any sector i; its expected indegree, E(dini ), is given by:

E(dini ) =
X
i

pij =

P
i ei
M

;8i (11)

That is, matrices of intersectoral linkages, A; drawn from the sampling scheme above

will yield, on average, as much heterogeneity in sectors along their supply dimension as the

modeler feeds it through the weights feigMi=1. Conversely it will generate homogeneity in
terms of the number of sectors a randomly chosen sector buys inputs from, i.e. it yields

sectors that will be alike in terms of the number of inputs they demand17.

What is left is to understand is how to specify the weight sequence feigMi=1. Two deter-
ministic, and rather extreme cases, serve as a useful starting point. Thus, consider �rst a

setting where each sector is an input supplier to every other sector in the economy. This

is isomorphic to complete network of sectoral linkages, where for any two pair of vertices

there is a directed arc from one to the other with probability one. The weight sequence that

generates it is simply ei = M for all i = 1; ::;M , and, necessarily, douti = dini = M for all

i. Conversely, an economy where, with probability one, there is sole input supplier maps

directly into a star network, where one vertex acts as a hub with directed arcs from this

vertex to all other vertices. An intermediate case is given by a N�star network, where N
out of M sectors in the economy act as material input suppliers to every sector and the

16Chung and Lu�s (2002, 2006) original model for undirected graphs gives pij =
eiejPM
k=1 ek

so that pij = pji
for all i; j. When studying inter-sectoral supply links this symmetry is uncalled for: the fact that sector i

has a high probability of supplying to j should not imply the converse.
17It is easy to adapt the arguments in Chung and Lu (2006, pp. 100-101) to go further and show that

actual (sampled) sequences of sectoral outdegrees will concentrate around its expected value and o¤er bounds

that are tight for the larger sectors (in term of outdegrees).
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remaining ones are solely devoted to �nal goods production. In this case, the corresponding

weight and outdegree sequences would be ei = douti = 0 for i = 1; ::;M �N and ei = douti = 1

for i = M � N + 1; :::;M , while the indegree sequences would be given by dini = N for all

i = 1; :::;M . The following de�nition summarizes these two cases in terms of their adjacency

matrices:

De�nition 5 For a given number M sectors, i) a complete network of sectoral linkages is

represented by aM�M binary matrix A(GC) where, for each element Aij(GC); P r(ACij(G
C) =

1) = 1 for all i; j = 1; :::M and ii) an N-star network of sectoral linkages is represented by a

M �M binary matrix, A(GS); where, for each element Aij(GS); P r(Aij(GS) = 1) = 0 for

all (i; j) pairs of sectors such that i = 1; :::;M � N and j = 1; :::;M and Pr(Aij = 1) = 1

for (i; j) pairs of sectors such that i =M �N + 1; :::;M and j = 1; :::;M:

Given a sequence of cost shares of intermediate inputs f
jgMi=1, I can then form the

corresponding input-use matrices, �(GC) and �(GS) by using the Lemma in the previous

subsection.

While providing simple benchmarks, the two networks above are too simple to capture

the patterns of sectoral linkages described in the previous section. To achieve this, in the

remainder of this subsection, I follow Chung, Lu and Vu (2003) and Chung and Lu (2006),

and specify weights ei such that i) the expected outdegree sequence follows an exact power

law sequence and ii) all sectors have the same expected indegree:

De�nition 6 Fix a triplet of parameters (M; e; �). Let A(M; e; �) denote a data generating

process for power law sectoral linkages, whose draws are M �M binary matrices A(GPL),

where for each element Aij(GPL); the Pr(Aij(GPL) = 1) = pij is given by [9] and the weight

sequence is given by

ei = ci�
1

��1 for 1 � i �M and � > 2 (12)

and

c =
� � 2
� � 1eM

1
��1 (13)

To see how this parameterization for link probabilities implies a power law sequence for

expected out-degrees, notice that I can use expression (12) to solve for i and get:

i _ E(douti )
��+1

(14)

Now suppose I rank sectors according to the expected number of sectors they supply

inputs to E(douti ). The expression in (12) implies that they will be ranked according to i:
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i = 1 giving the largest sector, i = 2 the second largest and so forth. Notice also that,

by de�nition, there are i sectors that, in expectation, supply to at least the same number

of sectors supplied by the ith�largest sector. Thus a sector�s rank i is proportional to the
fraction of sectors larger than i. What expression (14) is stating is that the log of this

fraction will scale linearly with the log expected out-degree of sector i; with parameter �

controlling the scaling behavior. Thus, the expected outdegree sequence is an exact power

law sequence18.

Notice also that the tail parameter � only controls the shape of the outdegree distribution

- how fat-tailed the distribution will be - but not the average indegree, which is a free

parameter, e. That is, it is possible to show that, under parameterization (12), the average

weight,
PM
i=1 ei
M

' e; .by approximating a �nite sum with an integral thus:

E(dini ) =

PM
i ei
M

=
1

M

� � 2
� � 1eM

1
��1

MX
i=1

i�
1

��1

' 1

M

� � 2
� � 1eM

1
��1

MZ
1

i�
1

��1di

= e� o(1); i = 1; :::;M

Figure 5 below plots the A(M; e; �) model-based equivalent of Figures 3 and 4, the inde-

gree density and the outdegree CCDF. It presents the sectoral demand-supply side breakdown

for thirty A matrices drawn at random from a family of intersectoral digraphs, A(M; e; �)

where I have picked the following parametrization: M is given by a 500 sector economy,

where the average number of inputs needed per sector, e; is set at 15; and the parameter

controlling heterogeneity of sectors along the supply side, �, is set at 2:1. This parameteri-

zation is based on the corresponding objects computed from the B.E.A. detailed input-use

matrices in Section 2.
18This is a deterministic sequence with power-law like (or scaling) behavior in that it gives a �nite sequence

of real numbers, E(dout1 ) � E(dout2 ) � ::: � E(doutM ), such that i = c [E(douti )]
�' where c is a constant and

' is called the scaling index. See Li et al (2006) for a useful discussion on scaling sequences vs. power law

distributions.
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Figure 5: Empirical indegree density (l.h.s.) and outdegree CCDF (r.h.s.) for 30

intersectoral trade structures drawn at random from A(M; e; �) for M = 500, e = 15,

� = 2:1:

While individual realizations of A are random objects, thus di¤ering in the exact place-

ment of zeros, the indegree and outdegree sequences implied by each realization of the in-

tersectoral network yield similar patterns. In other words, row and column sums will not

di¤er much across realizations. By design, each realization of A(M; e; �); retains the features

noted in Section 2: homogeneity along the demand side - sectoral indegrees concentrate

along the speci�ed average degree, e - and heterogeneity along the supply side, where the

number of sectors any given sector supplies can di¤er by orders of magnitude. Namely, the

outdegree sequences implied by realizations of A display fat-tails in the form of a power law-

as instructed by De�nition 6.

Given a realization of A(GPL) and a sequence f
jgMi=1 I can again resort to Lemma 1
to form the corresponding input-use matrix �(GPL) . However, some care is needed in

applying the Lemma, as realizations of A are now random objects. In particular, recall that

the Lemma requires that the indegree, dini , is strictly positive for all sectors i = 1; :::;M in

order for (I � �(GPL))�1 to be well de�ned:The following Lemma gives the probability that
this is indeed the case under the data generating process A(M; e; �).

Lemma 2 Fix a triplet of parameters (M; e; �). Let fdin
1
; :::; din

M
g denote the sampled in-

degree sequence, associated to a realization of A(GPL) under the data generating process

A(M; e; �). Then, with probability
�
1� �Mj=1

�
1� ej

M

��M
; all elements of the indegree se-

quence fdin
1
; :::; din

M
g are strictly positive:
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Thus, and noticing that given a triplet (M; e; �); I can compute the weight sequence

{ejgMj=1, I can always compute this probability. For example, for the data generating process
A(500; 15; 2:1) considered above, the probability that (I � �(G))�1 exists is 0.996. More
generally, for a �xedM , and given the statement in De�nition 6, the larger is their expected

indegree, the smaller is the probability that I sample sectors demanding no intermediate

inputs. Alternatively, �xing M and e, the smaller is � the higher is this probability since

the largest elements of the weight sequence will be closer to M (thus rendering the product

term closer to zero). With this technical proviso in mind, I now turn to derive analytical

expressions for aggregate volatility as a function of the network structure of intersectoral

trade under three di¤erent cases: complete, star and power law intersectoral networks.

3.3 Volatility Decay in Sectoral Networks

In this section I return to the static multisector setup put forth in Section 3.1 and show

how the structure of intersectoral linkages in�uences the volatility of aggregate output. For

analyzing the latter, and keeping in line with the literature (see Horvath, 1998, or Dupor,

1999), I take the variance of average log output

�2Y � E

"PM
i=1(yi � �i)

M

#2
(15)

as the aggregate volatility statistic. Note that
PM

i=1(yi � �i) is the sum of log sectoral

output (demeaned). Dividing this by the number of sectors gives a log-linear approximation

to the more obvious aggregate statistic, the log of total output. The di¢ culty with the latter

is that it involves a nonlinear function of the vector of shocks. The average of log sectoral

output can therefore be taken as the log-linearization of this function. Using this aggregate

statistic will allow me to compare my results directly with those in Horvath (1998) and

Dupor (1999)19.

Using the tools developed in the previous subsection in tandem with Lemma 1, I can now

represent the input-use matrix, �, as a function of the network of intersectoral linkages, �(G),

and thus make explicit the link between the latter and aggregate volatility,�2Y (�(G)): Propo-

19In subsequent work within the same multisector setup presented, Acemoglu et al (2010), show that if we

assume i) �j = � for all j, ii) �j = 1=M for all j and iii) premultiply the household�s utility function by an

appropriate normalization constant, then aggregate real value added is given by �
M (I � �)

�10". Notice that

this is proportional to
PM

i=1(yi��i)
M = 1

M (I � �)
�10". Thus, under these assumptions, the aggregate statistic

�2Y is proportional to the variance of aggregate real value added.
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sition 1 below gives an expression for this statistic in complete network settings, �2Y (�(G
C)

versus that obtained with N�star networks, �2Y (�(GS)):

Proposition 1 Assume that the share of material inputs, 
j = 
; and that sectoral volatility

�2j = �2 for all sectors j = 1; :::;M: Consider the equilibrium of a static multisector economy

(8) where the input-use matrix, �; is given by �(GC) or by �(GS). In either case, (I � �)�1

is given by

(I � �)�1 = I +



1� 

�10M

where � is an M � 1 vector with typical element doutiPM
i=1 d

out
i

and 1M is the unit vector of

dimension M � 1. Further, aggregate volatility, �2Y is given by:

�2Y (�(G
C)) =

�
1

1� 


�2
�2

M
(16)

for any complete network of sectoral linkages; and

�2Y (�(G
S)) =

�
N

M
+

2


1� 


�
�2

M
+

�



1� 


�2
�2

N
(17)

for any N-star network of sectoral linkages.

Notice that with the additional assumptions imposed in the proposition, sectoral tech-

nologies in these economies are symmetrical in all respects except, possibly, that some supply

to more sectors than others. This is borne out in the expressions for aggregate volatility:

they depend only on the share of material inputs, 
; sectoral volatility,�2, and the number

of e¤ective input suppliers in each case, M or N . The �rst two e¤ects are standard. Thus,

the higher the share of material inputs in production the more aggregate volatility will be

a¤ected by disturbances working through the input-output network20. Similarly, greater

sectoral volatility translates mechanically into heightened volatility in aggregates.

Of interest to this paper is the dependence of aggregate volatility on the number of sectors.

Thus, the expression for complete intersectoral structures of input trade is a particular case

of the results in Dupor (1999): aggregate volatility scales with 1=M . To understand how

e¤ective the shock diversi�cation argument is in this case notice the following: holding

sectoral productivity variance �xed as I move from a �ve sector economy to a �ve hundred

sector economy, aggregate volatility will be a hundred times smaller. From this, Dupor

20This multiplier e¤ect of (1=1 � 
) on aggregates is a standard feature of multisector economies; see for
example the discussion in Jones (2010a, 2010b)
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(1999) concludes that the input-output matrix provides a poor propagation mechanism for

independent sectoral shocks.

The result for N�star sectoral networks o¤ers a di¤erent, if somewhat predictable, view.
In an economy where the e¤ective number of input suppliers is small, the law of large numbers

will be postponed relative to that of Dupor (1999): aggregate volatility now scales with

1=N , the slowest decaying term in expression (29) 21. This is Horvath�s (1998) argument:

limited sectoral interaction yields greater aggregate volatility from sector speci�c shocks.

The di¢ culty with this result is that the modeler is now left to specify, for each M; what is

the number of input suppliers in an economy; N . If, as Horvath (1998) argues, that N is of

order
p
M , this would yield a ten fold decrease in aggregate variability as we move from �ve

to �ve hundred sectors.

I now show that when we abandon these two extreme cases and instead consider more

realistic power law sectoral networks - �(GPL)- aggregate volatility decays withM��; where

� 2 (0; 1] depending on the speci�c value of the tail parameter in the power law. Thus I
show that the power law speci�cation subsumes the two extreme cases above.

Proposition 2 Assume that the share of material inputs, 
j = 
; and that sectoral volatility

�2j = �2 for all sectors j = 1; :::;M: Consider the equilibrium of a static multisector economy

(8) where � is given by �(GPL) for any A(GPL) sampled from the family of input-use graphs

A(M; e; �): Then, with probability
�
1� �Mj=1

�
1� ej

M

��M
;
�
I � �(GPL)

��1
is well de�ned and

given by: �
I � �(GPL)

��1
= I +




1� 

e�10M +�

where e� is an M � 1 vector with typical element E(douti )PM
i=1 E(d

out
i )

and � is an M �M random

matrix with zero column sums. Further, whenever this is the case; �2Y (�(G
PL)) bounded

below by:

(1� o(1))
�



1�


�2
�1(�)

�2

M
if � > 3

or

(1� o(1))
�



1�


�2
�2(�)

�
1
M

� 2��4
��1 �2 if � 2 (2; 3)

where �1(�) =
(��2)2

(��1)(��3) and �2(�) =
(��2)2

(��1)(3��) ; positive constants given a �.

To interpret the Proposition consider the following thought experiment. Fix a number

of sectors, M; and de�ne a typical production technology by setting the average number of

21As it should be, the two expressions in Proposition 1 will be equal for N =M . Notice that if N is �xed

for any M the law of large numbers breaks down completely.
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inputs (e) a sector needs, in order to produce its output. Now entertain two di¤erent values

of the tail parameter governing heterogeneity across sectors in their role as input suppliers,

�1 and �2 such that 2 < �1 < 3 < �2. What this yields are two economies where sectoral

production technologies di¤er in their degree of diversi�cation. Thus �1 economies will be

less diversi�ed in that more mass at the tail implies that a greater number of sectors rely

on the same general purpose inputs. Conversely, �2 economies, by having more mass at

the center of the distribution of input supply links, will be more diversi�ed: there will be

a smaller number of hub-like sectors connecting all sectors in the economy and a greater

number of specialized input suppliers, each supplying inputs to a smaller fraction of sectors.

The proposition states that the scaling of the aggregate volatility statistic with M is

dependent which on region of the parameter space � is set, or alternatively, how diversi�ed is

the structure of intersectoral linkages in the economy. Thus, for thin tailed distributions of

sectoral outdegrees � > 3, aggregate volatility scales with the usual term of order O(1=M).

This means that the discussion regarding the decay rate in the special case of complete

network structures assumed by Dupor, applies also to the current context. Intuitively, in

economies with a large number of sectors that do not di¤er much in their role as input

suppliers, aggregate volatility will be negligible.

However, once we consider the fat-tailed region for � 2 (2; 3) the decay behavior is altered:
the aggregate volatility statistic now decays with M at a rate that is lowered signi�cantly

as we consider input use matrices from more heterogeneous outdegree economies:Namely,

Proposition 2 yields an analytical expression where the rate of decay in the volatility of

aggregate output depends negatively on the degree of fat-tailness in the distribution of

sectoral input-supply links. To see this notice that for � 2 (2; 3); the term in the expression

decays with M�� where � � 2��4
��1 2 (0; 1) Namely, as � approaches its lower bound of

2; aggregate volatility, �2Y (�(G
PL)) will converge to zero arbitrarily slower. Taking, for

example, the average value of � of 2.1. in Section 2, yields a much slower decay of order 6
p
M

or �2Y (�) _ �2
6pM . To have an idea of the magnitudes involved, this means that as I move

from, say, a �ve sector economy to a �ve hundred sector economy I expect to �nd only a

two-fold decrease in aggregate volatility. Thus, strong heterogeneity across input-supplying

sectors opens the possibility of generating non-negligible aggregate �uctuations even in large

scale multi-sectoral contexts22.

In short higher values of � yield greater technological diversi�cation: sectoral technologies

22Notice also that Horvath (1998) conjecture of a
p
M decay in aggregate volatility is obtained by �xing

� at a very particular point: � = 2:333:
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are relatively more reliant on specialized input-suppliers and less so on common, general

purpose, inputs. Therefore, greater diversi�cation in the form of less reliance on common

inputs will yield only loosely coupled technologies and, as a result, lower aggregate volatility.

Less diversi�cation induces strongly coupled technologies and thus a stronger propagation

mechanism23. The next section will show that this intuition carries through when we move

to dynamic multi-sector settings.

4 Dynamic Multi-Sector Economies

This section recalls a baseline dynamic multi-sectoral model, as introduced in Horvath (1998),

Dupor (1999) and Foerster, Sarte and Watson (2008). This is a multi-sector version of a

one-sector Brock-Mirman stochastic economy. Following Horvath (1998) and Dupor (1999),

I show that, for a particular case where it is possible to solve for the planner�s solution

analytically, the results derived in the previous section extend to a dynamic setting. I then

return to the general setup and present some quantitative explorations.

4.1 General Setup

A representative agent maximizes her expected discounted log utility from in�nite vector

valued sequences of consumption of M distinct goods and leisure.

E0

1X
t=0

�t

"
MX
j=1

log(Cjt)�  Ljt

#
(18)

where � is a time discount parameter in the (0; 1) interval, Ljt is labor devoted to the

production of the jth good at time t. Expectation is taken at time zero with respect to the

in�nite sequences of productivity levels in each sector, the only source of uncertainty in the

economy.

The production technology for each good j = 1; :::;M combines sector-speci�c capital,

labor and intermediate goods in a Cobb-Douglas fashion:

Yjt = ZjtK
�j
jt L

'j
jt

MY
i=1

M

ij
ijt (19)

23See Simon and Ando (1961) for a distant forerunner in analyzing the implications of loose vs. strong

coupling across units.

26



where Kjt; and Zjt are, respectively, time t; sector j; value of sector speci�c capital stock

and its (neutral) productivity level. Mijt gives the amount of good i used in sector j in

period t. Further, de�ne


j =

MX
i=1


ij

with 
ij denoting the cost-share of input from sector i in the total expenditure on inter-

mediate inputs for sector j (allowed to take the value of zero). Again I can arrange the cost

shares in a M �M input-use matrix, �. Constant returns to scale are assumed to hold at

the sectoral level such that:

�j + 'j +
MX
i=1


ij = 1;8j (20)

It�s assumed that sector-speci�c capital depreciates at rate � :

Kjt+1 = Ijt + (1� �)Kjt (21)

where Ijt is the amount of investment in sector j0s capital at time t. Note that due to

the sector-speci�c nature of capital, the sectoral resource constraints are given by:

Yjt = Cjt +Kjt+1 � (1� �)Kjt +
MX
i=1

Mjit (22)

Finally, I further assume that the log of sector speci�c productivity follows a random

walk

ln(Zjt) = ln(Zjt�1) + "jt; "jt s N(0; �2) (23)

where the sectoral innovations are assumed to be i.i.d. both in the cross section and

across time.

De�nition 7 The Social Planner�s problem is to choose sequences of sector speci�c capital

fKjt+1gj;t, intermediate inputs fMijtgi;j;t labor fLjtgj;t and consumption allocationsfCjtgj;t
such that, given a vector of time zero capital stocks fKj0gj and a sequence of sectoral pro-
ductivity levels fZjtgt drawn from (23), the following hold true:

i)fCjt; Ljtgj;t maximizes the representative consumer expected lifetime utility given by
(18)

ii) the sectoral resource constraint (22) is satis�ed, sector by sector, for all time periods,

where Yjt is given by (19).
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iii) the labor allocation across sectors is feasible,
PM

j=1 Ljt = L for all t; where L is the

time endowment of the household

As Foerster, Sarte and Watson (2008) show, the characterization of the deterministic

steady state of this model is analytically tractable and a log-linearization around that steady

state yields:

�yt+1 = ��yt +�"t+1 + �"t (24)

where �yt+1 is anM�1 vector of percentage deviations around the sectoral steady state,
"t+1 is a vector of sectoral productivity shocks and �;� and � are M �M matrices that

depend on model parameters only.

4.2 Analytical Solutions in a Special Case

I now take a special case of the setup above, where explicit analytical solutions are available.

In particular, I follow Horvath (1998) and Dupor (1999) and assume that there is no labor

('j = 0 for all j) and that sector-speci�c capital depreciates fully (� = 1·). Under these

assumptions, Dupor (1993, fn.3) and Foerster, Sarte and Watson (2008) show that the

planner�s problem now yields an analytical solution given by the �rst order autoregression:

�yt+1 = (I��)�10�d�yt + (I��)�10"t+1 (25)

where �d is aM �M diagonal matrix with the vector of capital shares � on its diagonal.

As in the simple static setup of Section 3, it is the Leontie¤ inverse (I��)�1 that mediates
the propagation of independent technology shocks at the sectoral level. Now, in order to

characterize the second moment properties of this economy, I study the spectral density

function for sectoral output growth induced by expression (25) above. This is possible since,

under the assumptions made here, the f�ytgt sequence given by (25) is stationary and thus
admits an in�nite moving average representation which, in turn, implies a frequency domain

representation. In particular, under the assumptions made above, it is easy to show that the

population spectrum for sectoral output growth, �yt; at frequency ! is given by

S�y(!;�)
:
=

�2

(2�)
(I � �de

�i! � �0)�1(I � �de
i! � �)�1 (26)

Furthermore, given anM�1 vector w of aggregation weights, the spectrum for aggregate
output growth at frequency ! is given by

S(!;�)
:
=w0S�y(!;�)w (27)
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The spectral density function is a useful object in that it provides a complete charac-

terization of the autocovariance function for average sectoral output growth. Notice that

by setting the elements of w to be equal and given by 1=M , S(!;�) is gives the dynamic

counterpart to the aggregate statistic (15) of the static model of Section 3

I now turn to characterizing the decay of the univariate spectral density expression (27)

with the number of sectors for the case of power law sectoral linkages �(GPL).

Proposition 3 Assume that the share of material inputs, 
j = 
 for all sectors j = 1; :::;M:

Consider the population spectrum for sectoral output growth S�y(!;�) (26) where � is given

by �(GPL) for any A(GPL) sampled from the family of input-use graphs A(M; e; �): Then,

with probability
�
1� �Mj=1

�
1� ej

M

��M
;
�
I � �(GPL)

��1
is well de�ned: Whenever this is the

case and for aggregation weights w = (1=M)1M ; the spectral density for aggregate output

growth S(!;�(GPL)), is bounded below by :

1

2�

a(!)

b(!)

�
(b(!)� 
2)

�2

M
+ (1� o(1))
2�1(�)

�2

M

�
if � > 3

and
1

2�

a(!)

b(!)

"
(b(!)� 
2)

�2

M
+ (1� o(1))
2�2(�)

�
1

M

� 2��4
��1

�2

#
if � 2 (2 ; 3 )

where a(!) = 1
(1��ei!�
)(1��e�i!�
) ,b(!) = (1 � �ei!)(1 � �e�i!); �1(�) =

(��2)2
(��1)(��3) and

�2(�) =
(��2)2

(��1)(3��) .

As in Proposition 2, the expression for the volatility of aggregates di¤ers according to

the tail parameter governing heterogeneity across sectors in their role as input suppliers.

Thus for � > 3, i.e. thin tail distributions, or diversi�ed economies, the expression again

recovers the strong diversi�cation of shocks argument given in Dupor. Volatility in aggregate

variables decays at rateM as we expand the number of sectors, yielding negligible aggregate

volatility for any moderate level of disaggregation. Conversely, for economies where large

input-supplying hubs form the basis for input trade �ows, this decay rate is slowed down

arbitrarily as � approaches its lower bound. The more every sectoral technology in an

economy relies on the same few key inputs the slower the law of large numbers applies.

However, as the Proposition makes clear, this scaling now extends to the autocovariance

function of output growth. In particular, exactly the same decay description applies for all

frequencies of the spectral density of aggregate output growth. This means that, for any

input-use matrix based on sectoral networks given by A(M; e; �), there is a link between
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volatility and persistence of aggregates and the network structure of the economy. Again,

from a network perspective, common reliance on a few input-supplying hubs will induce

greater conductance to shocks in those sectors and this in turn generates less subdued and

longer lived responses in aggregates.

4.3 Quantitative Explorations in a Network Laboratory

4.3.1 The Spectral Density and its Decay

The data generating process for input use matrices developed in this paper o¤ers a way to

model the extensive margin - who trades with whom - of intersectoral trade. In particular,

it enables us to generate arti�cial multisector economies with strong heterogeneity across

sectors in their role as input suppliers, while still imposing homogeneity in the number

of inputs required for production in each sector. However, recalling the decomposition in

Lemma 1, this was achieved at a cost: the model shuts down heterogeneity along the intensive

margin for any given sector, by imposing that all inputs used in that sector have equal cost

shares.

In contrast, by looking at the detailed input-use data, we can also observe that the

intensive margin does indeed play a role: sectors mix inputs in di¤erent proportions, thus

relying on some more than others in their production activities. The fact that the model

for input-use matrices cannot generate such heterogeneity in cost shares might therefore be

biasing the results. Notice that, a priori, it is not clear what the direction of this bias should

be. If all sectors rely relatively more on the same input then aggregate volatility might well

be higher than the one predicted by the model above. Conversely, if di¤erent sectors rely

heavily on di¤erent inputs, the model above should be overpredicting aggregate volatility.

It is therefore important to evaluate whether this strong restriction is biasing the results on

the volatility of aggregates.

To this e¤ect, I simulate the model implied spectral density of aggregate growth rates by

generating input-use matrices arti�cially. Thus, I will be drawing sectoral linkages networks

fromA(M; e; �) and then constructing input-use matrices according to Lemma 1. Speci�cally,

the simulations below trace the spectral density for an economy with 523 sectors (M = 523)

where the average sector demands inputs from �fteen other sectors (e = 15). Given the

power law characterization in Section 2, I choose a tail parameter of � = 2:1 to control

heterogeneity across input-supplying sectors. As stated above there are constant returns to

scale for all sectors, and I further assume that
PM

i=1 
ij = 0:5 and �j = 0:2 for all sectors.
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I set �, the time discount factor to 0.96, �, the depreciation rate to 0.06 and  = 1: The

aggregation vector w is constructed from the model-implied steady state shares of sectoral

gross output. I repeat this procedure 100 times and report 90% con�dence bands for the

simulated spectral density. I then compare with the spectrum obtained by using the 1977

detailed IO data24, on which the parameters of A are based. Throughout this subsection I

keep the standard deviation of the TFP innovation equal to 1.
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Figure 6: Data and model-implied spectral densities.

Figure 6 displays the resulting spectral densities. Notice that the median spectral density

of the simulated model economy is larger than that induced by data. This indicates that the

intensive margin of trade does give further opportunities for the diversi�cation of sectoral

technologies. Thus, the model seems to be somewhat overstating the possibilities for sizeable

aggregate �uctuations.

Notice also that, following the same parameterization, I can compute the model-implied

spectral density for di¤erent levels of aggregation of input-use data. From here, I can then

compute what is the rate of decay of the spectral density with the number of sectors and

compare it to the predictions on the rate of decay given in Proposition 3. To implement

this, I use the input-use data for 1977 available from the BEA at three di¤erent levels of

aggregation: 523 sectors (mostly 4 digit SIC), 366 sectors (3 digit SIC) and 77 sectors (2

digit SIC). From the latter, I aggregate manually to construct a 36 sector input-use matrix

according to the de�nitions of Jorgenson et al. (2005).
24To clarify, I take the original 1977 input use matrix and use the actual shares of intermediate inputs,

capital and labor for each of the 523 sectors in the IO data. The aggregation vector is then constructed with

the model-implied steady state shares of sectoral gross output under the above parameterization.
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Figure 7: Spectral Densities for the 1977 input use data across di¤erent aggregation levels.
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Figure 8: Spectral density decay for di¤erent levels of aggregation of 1977 input-use data

at 0.1 frequency.

Figure 7 plots the spectral density (27) using the 1977 data at various levels of disaggre-

gation. Figure 8 plots the rate of decline in the spectrum at a particular frequency, ! = 0:1.

The results are identical for all frequencies. Figure 7 clearly shows that the spectrum of

aggregate capital declines with disaggregation. However, Figure 8 reveals that the rate of

decrease in the spectrum is slower than that implied by standard law of large numbers (1=M

line in the graph). Figure 8 also depicts the rate of decay M��, predicted by Proposition

3. In particular, I set � = 0:18; obtained by substituting the baseline estimate of � = 2:1 in
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the expression � � 2��4
��1 . Overall, this predicted rate of decay seems to approximate well the

actual rate of decay in the 1977 data.

4.3.2 Aggregate Fluctuations and Comovement.

I now assess the performance of aggregates in the multisector i.i.d. setup and compare it

to that implied by a panel of detailed sectoral data. In particular, I use the NBER-CES

manufacturing industry database to obtain the annual standard deviation of sectoral TFP.

Averaging over the 458 4-digit SIC sectors for the sample period 1958-1996 yields an average

standard deviation of 7.5. I also back out the implied standard deviation of aggregate gross

output growth (by aggregating sectoral growth rates according to their gross output weights)

and the average correlation of sectoral output growth with aggregate growth.

I compare these data moments with those implied by the calibrated model above where

again I draw input-use matrices from families of matrices A(M; e; �) constructed according

to Lemma 1. Speci�cally, to match the NBER-CES data set, I now draw input-use matrices

with 458 hundred sectors (M = 458) where the average sector demands inputs from twenty

other sectors (e = 15). Given the results linking di¤erent volatility and persistence in

aggregates with di¤erent levels of heterogeneity in input-supply links - or diversi�cation of

sectoral technologies - I consider sampling from two di¤erent families: � = 2:1 and � = 3:1.

I maintain the remaining parameters constant across simulations. For each of these values

of � I draw 100 input-use matrices, simulate the economy for 1000 periods and aggregate

according to the model implied steady state shares to obtain 100 series of annual aggregate

growth rates. Throughout, the standard deviation of the TFP process (23) hitting each of

these sectors is set at the value of 7.5 found in data. Table 3 summarizes the results.

NBER-CES Data Model (� = 2:1) Model (� = 3:1)

Standard Deviation of Sectoral

TFP

7.5 7.5 7.5

Standard Deviation of Aggre-

gate Growth Rate

4.5 2.9 1.2

Average Correlation of Sec-

toral Output Growth with Ag-

gregate Growth

0.36 0.14 0.06

Number of Common Factors in

Sectoral Growth Rates

1 1 0

Table 2. Selected Moments from Data and Model Calibrations
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The second line of the table above shows that a standard multisector i.i.d. economy

with a reasonable variability in sectoral TFP shocks can generate aggregate growth rates

that are two thirds as volatile as those seen in data. Recall that a standard LLN reasoning

would imply a standard deviation of aggregate growth that is one order of magnitude lower

(7:5=
p
458 = 0:35), less than one tenth of the observed standard deviation in data. In

fact, as we move to a more diversi�ed economy (� = 3:1), the implied standard deviation

of aggregate growth rates is already 60% lower than that of the reference model and 75%

smaller than what we see in data. The � = 2:1 model economy is also able to reproduce 40%

of the observed average correlation between sectoral output growth and aggregate growth.

Interestingly, while the implied comovement/cross-sectional correlation is smaller than

that found in data, it would nevertheless be su¢ ciently high to induce an outside observer

to entertain a 1 shock representation for the panel of sectoral growth rates. The last line

in the table reports the outcome of Bai and Ng (2002) common factor tests where I have

implemented the PC p1 and PC p1 estimators both for the NBER panel of sectoral growth rates

and for the calibrated multisector economy. Both the data and the � = 2:1 model economy

yield a 1 factor representation of data while in the counterfactual diversi�ed economy (� =

3:1) the Bai and Ng (2002) tests fail to identify any common factor.

Finally, the analysis above suggests that a shock to a large input-supplying sector, i.e. to

a general purpose technology, will propagate throughout the economy as a large fraction of

other technologies are dependent on it. This means that the structure of intermediate input

trade renders the economy vulnerable to disturbances in particular sectors. However, one can

also proceed to ask a related question: what is the response of the aggregate economy to an

average shock? Here I translate an average shock as a shock to an average sector in terms of

the number of sectors that it supplies inputs to. Intuition would indicate that the impact of

this should be muted by the very fact that the output of an average sector is specialized and

demanded only by a limited number of sectors. This in turn generates limited conductance

to average shocks. This o¤ers an alternative characterization of the structure of the economy

as robust to typical shocks.

A simple impulse response analysis illustrates these ideas. Having drawn an input-use

matrix, I simulate the growth rate response for each of the four hundred and �fty eight

sectors to a one-standard deviation negative shock in the productivity of the largest input-

supplying sector (i.e. the sector corresponding to the largest row sum of the sampled A

matrix). I then aggregate to see what this implies for the aggregate growth rate response

in these economies. I then follow the exact same procedure but instead give a minus one
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standard deviation pulse to an average sector. That is, for a sampled A matrix, I pick a

sector that supplies to �fteen other sectors. If none is found I pick the next largest sector. If

more than one is found I shock at random one of the average degree sectors. Figure 9 and

10 below display the outcome of such experiments by displaying the median response over

100 such simulations.
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Figure 9: Impulse response of aggregate growth rate of output to one standard deviation

TFP shock to largest and average input suppliers in a � = 2:1 economy.
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Figure 10: Impulse response of aggregate growth rate of output to one standard deviation

TFP shock to largest and average input suppliers in a � = 3:1 economy.

Figure 9 displays precisely the robust-yet-vulnerable nature of economies with limited

technological diversi�cation (� = 2:1). A shock to the largest sector induces broad comove-

ment in the economy as disturbances in the production technology of a general purpose
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sector propagate to all sectors in the economy. This yields, on impact, a 2% contraction in

aggregate output. In contrast, a shock to an average connectivity sector induces responses

in a small number of sectors. Its limited number of connections implies no synchronized

movement and as a consequence, propagation to aggregates is weak with aggregate output

contracting by 0.05%.

Figure 10 shows what happens when I sample from more diversi�ed economies (� = 3:1).

The upshot of a thinner tail is that the largest sector sampled from a A(458; 15; 3:1) family
will supply to a relatively smaller number of sectors: as such, propagation is weaker and

the mean growth rate response is smaller by one order of magnitude. Interestingly, no such

contrast obtains when I consider a shock to an average sector. This suggests that the di¤er-

ence between more and less diversi�ed economies lies in their vulnerability to disturbances

in large sectors and not in their robustness to an average shock.

5 Conclusion

Narrowly de�ned, the starting point of this paper was based on the following insight: setting

cost shares to zero for particular intermediate inputs is tantamount to assuming particu-

lar network structures for sectoral linkages. From this, I have shown that it is possible to

start characterizing sparseness in large-scale input-output data by using a network approach.

More importantly, I have built models of intersectoral linkages that retain the �rst-order con-

nectivity characteristics of data. With this apparatus in hand, the paper employed these

tools to solve a controversial question in the business cycle literature: can large-scale multi-

sector models with independent productivity shocks generate non-negligible �uctuations in

aggregates?

The answer that emerges from this paper is: yes, provided most sectors resort in large

measure to the same general purpose inputs. In other words, aggregate �uctuations obtain in

economies that are not too diversi�ed in terms of the inputs required by di¤erent technologies.

Further, input-output data seems to con�rm that this is indeed the case, as most sectors rely

on key, basic, technologies: oil, electricity, iron and steel, real estate, truck transportation

and telecommunications. Sectors are therefore interconnected by their joint reliance on a

limited number of general purpose technologies and di¤er only in the mix of remaining inputs

each uses to produce its good.

From a network perspective this means that the linkage structure in the economy is

dominated by a few sectoral hubs, supplying inputs to many di¤erent sectors. In this case,
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productivity �uctuations in these hub-like sectors propagate through the economy and a¤ect

aggregates, much in the same way as a shutdown at a major airport has a disruptive impact

on all scheduled �ights throughout a country. In either case, there are no close substitutes

and every user is a¤ected by disturbances at the source.

Once one starts to think about the fabric of input-trade in this way, other questions

follow suit: can one characterize diversi�cation in networks of sectoral technologies over

time or across countries? Take, for example, a problem that has generated recent interest

among macroeconomists: the decline in business cycle volatility over the past half century.

The conjecture that follows from this paper is that reliance on traditional hubs must have

diminished as more specialized substitutes develop. The response of the U.S. economy to

past and present oil shocks seems to con�rm this view: as alternative energy technologies

develop and sectors diversify in their most preferred energy source, the role of oil as a hub

to the economy has diminished. As such, oil shocks would likely have a smaller impact on

aggregates. Concurrently, the I.T. revolution can be seen as having provided a wealth of

alternatives to traditional means of communication and points of sale. The same network

perspective can be taken across countries: do less developed economies rely relatively more on

a limited number of key technologies? In this sense, can their technologies be characterized

as less diversi�ed? If so, the arguments in this paper would predict that less developed

economies display more pronounced movements in aggregate output, as indeed seems to be

the case in data.

To go beyond these conjectures necessarily implies more careful measurement of the

network properties of input-use data and, most likely, more disaggregated data. Indeed,

the particular network properties chosen in this paper - tail properties of degree sequences

- are both hard to measure and special in that they pertain only to local features of a

network. Other measures of connectivity exist and can be of use in characterizing properties

of intersectoral trade �ows.

At the same time, once one recognizes that network structure is linked to macroeconomic

outcomes a more ambitious question emerges: what determines these structures? This re-

quires developing a causal mechanism, i.e. a theory where the network of input-�ows is the

endogenous outcome of a well-speci�ed economic model. Such theory is surely necessary if

one is to think rigorously about the dynamic evolution of these complex objects. This paper

falls short of this and makes the easier point that network structure matters. As such, this

paper is a starting point for a larger research agenda linking macroeconomic outcomes to

the networked structure of modern economies.
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A Sensitivity Analysis for Section 2

In this section I present the results of a sensitivity analysis with regard to the cut-o¤ rule

used to de�ne an intersectoral supply link. In particular, I recalculate Table 1 in Section 2,

by considering linkages to be de�ned by transactions that exceed 0.5% or 2% of the total

input purchases of that sector (rather than the 1% baseline case). The following tables

summarize the results, where I now also include information about the average degree (d)25.

Considering �rst the 2% cuto¤ rule:

1972 1977 1982 1987 1992 1997 2002b� 2.23 2.19 2.24 2.10 2.20 2.07 2.29

s :e:(b�) 0.19 0.17 0.19 0.13 0.17 0.18 0.19

d 9 9 9 9 9 9 9

N_tail 71 78 67 93 81 113 78

M 483 523 527 509 478 474 417

Table A1: MLE estimates b�, their standard errors ( s:e:(b�));the average degree (d); the
number of observations used to estimate the tail parameter (N_tail) and the total number

of sectors (M) for each year from 1972-2002

Alternatively, the 0.5% cuto¤ yields:

1972 1977 1982 1987 1992 1997 2002b� 2.10 2.34 1.96 2.45 1.97 2.01 1.91

s :e:(b�) 0.22 0.27 0.23 0.44 0.18 0.17 0.16

d 24 23 24 24 21 24 24

N_tail 83 67 155 62 138 116 168

M 483 523 527 509 478 474 417

Table A2: MLE estimates b�, their standard errors ( s:e:(b�));the average degree (d); the
number of observations used to estimate the tail parameter (N_tail) and the total number

of sectors (M) for each year from 1972-2002.

The average degree changes in a obvious way: the more demanding (lax) is the de�nition

of a sectoral input linkage - i.e. the higher (lower) the cuto¤ is- the smaller (higher) is the

25Recall that the average indegree and the average outdegree have to coincide in a directed graph. I refer

to this quantity as average degree.
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average connectivity. The average tail parameter estimate, b�, also does not change much.
Recall that for the 1% cut-o¤ rule the average across years was 2.14. Now, for the 2% case,

the mean b� is 2.19, while for the 0.5% cuto¤ it is 2.11. I conclude that the characterization

put forth in Section 2 is robust to alternative cuto¤ rules.
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B Proof Appendix

The proofs of this paper make repeated use of known results on the inverse of a sum of two

matrices. For convenience, I state the relevant ones here:

A.1. Some results on the inverse of a sum of two matrices.

Lemma A.1. Let A be a nonsingular M�dimensional matrix and let U , B and V be

M �M matrices. Then,

(A+ UBV )�1 = A�1 � (I + A�1UBV )�1A�1UBV A�1

Proof: See, for example, Henderson and Searle (1981).

A particular case of this is given by the Bartlett inverse:

Lemma A.2. (Bartlett Inverse). Let A be a square, invertible, M�dimensional
matrix and u and v be M�dimensional vectors. Then:

(A+ uv0)�1 = A�1 � A�1uv0A�1

1 + v0A�1u

A.2. Proofs

Lemma 2 Fix a triplet of parameters (M; e; �). Let fdin
1
; :::; din

M
g denote the sampled

indegree sequence, associated to a realization of A(GPL) under the data generating process

A(M; e; �). Then, with probability
�
1� �Mj=1

�
1� ej

M

��M
; all elements of the indegree se-

quence fdin
1
; :::; din

M
g are strictly positive.

Proof: Consider �rst the probability that a given sector i has an indegree of zero, i.e.

that it demands no inputs:

Pr(din
i
= 0) = �Mj=1

�
1� ej

M

�
Thus, the probability that a given sector demands one intermediate input or more is:

Pr(din
i
� 1) = 1� Pr(din

i
= 0) = 1� �Mj=1

�
1� ej

M

�
Notice that given that each input linkage is an i.i.d. draw, the indegree sequences are

themselves independent draws. Thus, the probability that all sectors demand at least one
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intermediate input is given by

Pr(din
1

� 1; din
2
� 1; :::; din

M
� 1) = �Mi=1

h
1� �Mj=1

�
1� ej

M

�i
=

h
1� �Mj=1

�
1� ej

M

�iM
�

Proposition 1 Assume that the share of material inputs, 
j = 
; and that sectoral

volatility �2j = �2 for all sectors j = 1; :::;M: Consider the equilibrium of a static multisector

economy (8) where the input-use matrix, �; is given by �(GC) or by �(GS). Then (I � �)�1

is given by

(I � �)�1 = I +



1� 

�10M

where � is an M � 1 vector with typical element doutiPM
i=1 d

out
i

and 1M is the unit vector of

dimension M � 1. Further, aggregate volatility, �2Y is given by:

�2Y (�(G
C)) =

�
1

1� 


�2
�2

M
(28)

for any complete network of sectoral linkages; and

�2Y (�(G
S)) =

�
N

M
+

2


1� 


�
�2

M
+

�



1� 


�2
�2

N
(29)

for any N-star network of sectoral linkages.

Proof: De�ne the vectors u and v such that u is an M � 1 vector with each entry ui
restricted 2 [0;M ] and v an M � 1 vector where each element vi is given by 
P

i ui
. Now

notice that if I can show that � = uv0 I can then apply Lemma A.1. to get

(I � �)�1 = (I � uv0)�1 = I +
uv0

1� 


where the last equality follows from v0u = 
 (by construction). Notice also that for the

static multisector economy deviations of sectoral output from its mean are then given, in

vector form, by:

y � � =(I + uv0

1� 

)0"

The rest of the proof shows what the vectors u and v will be for each of the intersectoral

networks considered.

Taking the complete case �rst and noticing that, in this case the indegree of each sector

is equal to M , apply Lemma 1 to :
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�(GC) =
� 

M
A(GC)

�
where A(GC) is the adjacency matrix of a complete regular digraph of sectoral supply

linkages. Notice that, by de�nition, the average outdegree is
�P

i

douti

�
=M = M: Hence I

can rewrite �(GC) as

�(GC) = 
M1M1
0

M

�
1P
i d
out
i

�
Now let u be given by M1M (i.e. the outdegree sequence of Gc) and v0 = 1

0
M

�

P
i d
out
i

�
.

Clearly, � = uv0 and therefore, using Bartlett inverse result:

(I � �(GC))�1 = I +



1� 

�10M

where � is an M � 1 vector with typical element doutiPM
i=1 d

out
i

and 1M is the unit vector of

dimension M � 1. Now,
MX
i=1

yi � �i =
MX
i=1

(1 +M
ui


(1� 
)
P

i d
out
i

)"i

=
MX
i=1

(1 +M
M


(1� 
)M2
)"i

=
MX
i=1

1

(1� 
)
"i

Finally given the assumption of i.i.d. sectoral disturbances, �2Y � E
hPM

i=1(yi��i)
M

i2
�2Y (�(G

C)) =

�
1

1� 


�2
�2

M

as stated in the Proposition.

Now, for the N � Star; the indegree of each sector is N; such that by Lemma 1

�(GS) =
� 

N
A(GS)

�
where A(GS) is the binary matrix de�ned in the text. Notice that, by de�nition, the

average outdegree is now
�P

i

douti

�
=M = MN=M = N:Without loss of generality, order

sectors so that the �rst M �N vertices are not input suppliers and the remaining N sectors

supply inputs to every sector in the economy. Then I can write �(GS) as

�(GS) = 
M

"
0M�N

1N

#
1
0

M

�
1P
i d
out
i

�
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Where 0M�N is anM�N dimensional vector of zeros and 1N is an N dimensional vector

of ones. Now, take the Bartlett inverse, where u is given by M

"
0M�N

1N

#
, which is simply

the out-degree sequence of the N � star network, and v0 = 1
0
M

�

P
i d
out
i

�
: Then, again I can

write

(I � �(GS))�1 = I +



1� 

�10M

where � is an M � 1 vector with typical element doutiPM
i=1 d

out
i

and 1M is the unit vector of

dimension M � 1. Now,

MX
i=1

yi � �i =
MX

i=M�N+1
(1 +M

ui


(1� 
)
P

i d
out
i

)"i

=
MX

i=M�N+1
(1 +

M2


(1� 
)
P

i d
out
i

)"i

=
MX

i=M�N+1
(1 +




1� 


M

N
)"i

Then, given the assumption of i.i.d. sectoral disturbances

�2Y (�Star) =

�
N

M
+ 2




1� 


�
�2

M
+

�



1� 


�2
�2

N

As stated in the Proposition. �

Proposition 2 Assume that the share of material inputs, 
j = 
; and that sectoral

volatility �2j = �2 for all sectors j = 1; :::;M: Consider the equilibrium of a static multisector

economy (8) where � is given by �(GPL) for any A(GPL) sampled from the family of input-

use graphs A(M; e; �): Then, with probability
�
1� �Mj=1

�
1� ej

M

��M
;
�
I � �(GPL)

��1
is well

de�ned and given by:

�
I � �(GPL)

��1
= I +




1� 

e�10M +�

where e� is an M � 1 vector with typical element E(douti )PM
i=1 E(d

out
i )

and � is an M �M random

matrix with zero column sums. Further, whenever this is the case; �2Y
�
�(GPL)

�
bounded

below by:

(1� o(1)
�



1�


�2
�1(�)

�2

M
if � > 3
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or

(1� o(1)
�



1�


�2
�2(�)

�
1
M

� 2��4
��1 �2 if � 2 (2; 3)

where �1(�) =
(��2)2

(��1)(��3) and �2(�) =
(��2)2

(��1)(3��) ; positive constants given a �.

Proof: For ease of exposition, I break the proof into three parts. In Part 1, I prove

the statement on
�
I � �(GPL)

��1
: In Part 2, I show how to use this statement to express

�2Y
�
�(GPL)

�
, using the matrix-inversion Lemmas given at the beginning of this appendix.

Finally, in Part 3, I show that the stated inequality holds true.

Part 1) First notice that under the assumptions stated, Lemma 1 gives, �(GPL) =


A(GPL)D where D is a diagonal matrix with a typical element Dkk =
1
dink
. According

to Lemma 2, all the diagonal elements of D are bounded above by 1, with probability�
1� �Mj=1

�
1� ej

M

��M
. Whenever this is the case, the maximal eigenvalue of �(GPL) is

bounded above by 
 and therefore [I � �(GPL)]�1 is well de�ned. For any realization of
the intersectoral trade digraph A(GPL) that satis�es this condition, notice that I can always

express [I � 
A(G)D]�1 as:

[I � 
A(G)D]�1 =
�
I � 
E(A(G))D � 
[A(G)D � E(A(G))D]

	�1
where E is the expectation operator and D is a diagonal matrix with a typical element

Dkk =
1

E(dink )
. Now, to apply the formula for the inverse of a sum of matrices in Lemma A.1.,

let

I � 
E(A(G))D � C

�
[A(G)D � E(A(G))D] � U

to express the problem as an inverse of a sum of matrices:

[I � 
A(G)D]�1 = [C + IMUIM ]
�1

so that the formula for the inverse in Lemma A.1. yields

[I � 
A(G)D]�1 = C�1 � C�1U [I + C�1U ]�1C�1

Now notice that E[A(G)], is an M �M matrix whose ij entry is given by E[Aij(G)] =

pij =
ei
M
and that Dkk =

1
E(dink )

= MPM
i=1 ei

for all k: Hence E(A(G))D can be expressed as a

rank one matrix:

C = E(A(G))D = �10M
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where � =
h

e1PM
i=1 ei

; :::; eMPM
i=1 ei

i
and 10 � [1; :::; 1]: Thus applying Bartlett formula for C�1

yields

[I � 
�10]�1 = I +

�10

1� 
10I�

Since 10�= 1 we get for C�1

[I � 
�10]�1 = I +



1� 

�10

Now to solve for [I + C�1U ]�1 substitute in C�1 to get

[I + C�1U ]�1 =

�
I +

�
I +




1� 

�10
�
U

��1
=

�
I + U +




1� 

�10U

��1
Notice that for any realization of A(G)D;the matrix U = �
[A(G)D�E(A(G))D], will

have zero column sums. This is so since, by construction, A(G)D and E(A(G))D have the

same column sums (and equal to 1 for every column). Hence the di¤erence will yield zero

column sums. Thus 10U = 00 where 0 is an M � 1 vector of zeros and �10U is a M �M

matrix of zeros. This implies that:

[I + C�1U ]�1 = [I + U ]�1

Collecting results

[I � 
A(G)D]�1 =

�
I +




1� 

�10
�
�
�
I +




1� 

�10
�
U [I + U ]�1

�
I +




1� 

�10
�

This expression can be further simpli�ed by again using the fact that �10U is a matrix

of zeros. Thus:

[I � 
A(G)D]�1 =

�
I +




1� 

�10
�
� U [I + U ]�1

�
I +




1� 

�10
�

or

[I � 
A(G)D]�1 =

�
I +




1� 

�10
�
+�

where � =
h

e1PM
i=1 ei

; :::; eMPM
i=1 ei

i
=
h

E(dout1 )PM
i=1 E(d

out
i )

; :::;
E(doutM )PM
i=1 E(d

out
i )

i
and � is de�ned as

��
[A(G)D � E(A(G))D][I � 
[A(G)D � E(A(G))D]]�1
�
I +




1� 

�10
�
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Now, for the zero column sum claim on � recall again that, by construction, A(G)D and

E(A(G))D have the same column sums. Hence their di¤erence will yield a zero column sum

matrix. Finally, notice that premultiplication of a matrix by a zero column sum matrix gives

again a zero column sum matrix. Hence � will have column sums equal to zero.

Part 2) Recalling the de�nition of U , I can write � = �U [I + U ]�1
h
I + 


1�
�1
0
i
. Then

the static multisector model gives:

y � � =
��
I +




1� 

�10
�
+�

�0
"

Thus with 10 � [1; :::; 1]

MX
i=1

yi � �i = 10
��
I +




1� 

�10
�
+�

�0
"

= 10I"+



1� 

10(1�)"+ 10�0"

=
MP
i=1

"i +



1� 

M

MP
i=1

�i"i +
MP
j=1

MP
i=1

�ij"i

Thus the aggregate statistic 1
M

PM
i=1 yi � �i

1

M

MX
i=1

yi � �i =
1

M

MP
i=1

"i +



1� 


MP
i=1

�i"i +
1

M

MP
j=1

MP
i=1

�ij"i

which has expectation zero given independent technology shocks. Now we�re interested

in E
��

1
M

PM
i=1 yi � �i

�2�

E

24 1

M

MX
i=1

yi � �i

!235 =
1

M2

MP
i=1

E(("i)
2) +

�



1� 


�2 MP
i=1

�2iE(("i)
2) +

1

M2

MP
i=1

 
MP
j=1

�ij

!2
E(("i)

2)

+
2

M

�



1� 


�
MP
i=1

�iE(("i)
2) +

2

M

MP
i=1

MP
j=1

�ijE(("i)
2)

+
2

M

�



1� 


�
MP
i=1

�i

 
MP
j=1

�ij

!
E(("i)

2)

Notice that
MP
i=1

MP
j=1

�ij =
MP
j=1

MP
i=1

�ij = 0 (since � is a zero column-sum matrix), that
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MP
i=1

�i = 1 and that E(("i)
2) = �2. Using these facts, I can simplify the expression to:

�2Y
�
�(GPL)

�
=

�



1� 


�2
�2

MP
i=1

�2i+
1

M
�2+

2

M
�2
�




1� 


�
+
2

M
�2
�




1� 


�
MP
i=1

�i

 
MP
j=1

�ij

!
+
�2

M2

MP
i=1

 
MP
j=1

�ij

!2

Part 3). First, notice that by de�nition of the vector �

MP
i=1

�2i �
"
MP
i=1

e2i =

�
MP
i=1

ei

�2#

=
1

M

MP
i=1

e2i =
MP
i=1

ei

MP
i=1

ei=M

=
1

M

ee
e

Where ee � MP
i=1

e2i =
MP
i=1

ei: Chung and Lu (2006, p.109) show that under a power law weight

parameterization, ee is given by:
ee = ( e (��2)2

(��1)(��3) if � > 3

e��2 (��2)
��1m3��

(��1)��2(3��) if � 2 (2; 3)

where m is the maximum expected outdegree, e1. Thus, according to De�nition 6 m =
��2
��1eM

1
��1 : Therefore, the �rst term in the expression above is given by:

�



1� 


�2
�2

MP
i=1

�2i =

8<:
�



1�


�2
�1(�)

�2

M
if � > 3�



1�


�2
�2(�)

�
1
M

� 2��4
��1 �2 if � 2 (2; 3)

where �1(�) =
(��2)2

(��1)(��3) and �2(�) =
(��2)2

(��1)(3��) .

Now, grouping the �rst and the last two terms in the above expression (given at the end

of Part 2 of the Proof) for �2Y
�
�(GPL)

�
:

�



1� 


�2
�2

MP
i=1

�2i +
2

M
�2
�




1� 


�
MP
i=1

�i

 
MP
j=1

�ij

!
+

�2

M2

MP
i=1

 
MP
j=1

�ij

!2

= �2
MP
i=1

"



1� 

�i +

1

M

MP
j=1

�ij

#2
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Each element of this M sum has to be non-negative and at least for some i, strictly

positive since not all
MP
j=1

�ij can be negative (recall that
MP
i=1

MP
j=1

�ij = 0 since � is a zero

column sum matrix). Thus, summing over i implies that for any M it has to be the case

that:

�



1� 


�2
�2

MP
i=1

�2i +
�2

M2

MP
i=1

 
MP
j=1

�ij

!2
> � 2

M
�2
�




1� 


�
MP
i=1

�i

 
MP
j=1

�ij

!
I have shown that the �rst term on the LHS of this expression always goes to zero.

Assume the second term also does so, i.e. �2

M2

MP
i=1

 
MP
j=1

�ij

!2
is o(1) (otherwise, since this

is a strictly positive term, the Law of Large Numbers will break down completely in which

case the statement of the proposition is trivially true). Now, there are three possible cases:

either �2

M2

MP
i=1

 
MP
j=1

�ij

!2
is o

��


1�


�2
�2

MP
i=1

�2i

�
or
�



1�


�2
�2

MP
i=1

�2i is o

0@ �2

M2

MP
i=1

 
MP
j=1

�ij

!21A
or they both approach zero at the same rate. Whatever is the case, for the inequality to

hold for any M , the RHS will have to converge to zero at a faster rate than the slowest

moving term in the LHS. Thus, � 2
M
�2
�



1�


� MP
i=1

�i

 
MP
j=1

�ij

!
is either o

��


1�


�2
�2

MP
i=1

�2i

�

or o

0@ �2

M2

MP
i=1

 
MP
j=1

�ij

!21A respectively.

First, take the case where the RHS of the inequality is o
��



1�


�2
�2

MP
i=1

�2i

�
. Then,

�2Y
�
�(GPL)

�
=

�



1� 


�2
�2

MP
i=1

�2i+
1

M
�2+

2

M
�2
�




1� 


�
+

+
2

M
�2
�




1� 


�
MP
i=1

�i

 
MP
j=1

�ij

!
+

�2

M2

MP
i=1

 
MP
j=1

�ij

!2

>

�



1� 


�2
�2

MP
i=1

�2i +
2

M
�2
�




1� 


�
MP
i=1

�i

 
MP
j=1

�ij

!
+

�2

M2

MP
i=1

 
MP
j=1

�ij

!2

> (1 + o(1))

�



1� 


�2
�2

MP
i=1

�2i � o

 �



1� 


�2
�2

MP
i=1

�2i

!

> (1� o(1))

�



1� 


�2
�2

MP
i=1

�2i
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Alternatively, take the case where the RHS of the inequality is o

0@ �2

M2

MP
i=1

 
MP
j=1

�ij

!21A.
Then,

�2Y
�
�(GPL)

�
=

�



1� 


�2
�2

MP
i=1

�2i+
1

M
�2+

2

M
�2
�




1� 


�
+

+
2

M
�2
�




1� 


�
MP
i=1

�i

 
MP
j=1

�ij

!
+
�2

M2

MP
i=1

 
MP
j=1

�ij

!2

>

�



1� 


�2
�2

MP
i=1

�2i +
2

M
�2
�




1� 


�
MP
i=1

�i

 
MP
j=1

�ij

!
+

�2

M2

MP
i=1

 
MP
j=1

�ij

!2

> (1 + o(1))
�2

M2

MP
i=1

 
MP
j=1

�ij

!2
� o

0@ �2

M2

MP
i=1

 
MP
j=1

�ij

!21A
> (1� o(1))

�2

M2

MP
i=1

 
MP
j=1

�ij

!2

> (1� o(1))

�



1� 


�2
�2

MP
i=1

�2i

Recalling the solution to
�



1�


�2
�2

MP
i=1

�2i show above, I have thus shown that:

�2Y
�
�(GPL)

�
>

8<: (1� o(1)
�



1�


�2
�1(�)

�2

M
if � > 3

(1� o(1)
�



1�


�2
�2(�)

�
1
M

� 2��4
��1 �2 if � 2 (2; 3)

as claimed in the Proposition. �

Proposition 3 Assume that the share of material inputs, 
j = 
 for all sectors j =

1; :::;M: Consider the population spectrum for sectoral output growth S�y(!;�) (26) where �

is given by �(GPL) for any A(GPL) sampled from the family of input-use graphs A(M; e; �):

Then, with probability
�
1� �Mj=1

�
1� ej

M

��M
;
�
I � �(GPL)

��1
is well de�ned : Whenever this

is the case and for aggregation weights w = (1=M)1M ; the spectral density for aggregate

output growth S(!;�(GPL)), is bounded below by :

1

2�

a(!)

b(!)

�
(b(!)� 
2)

�2

M
+ 
2�1(�)(1� o(1))

�2

M

�
if � > 3

and
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1

2�

a(!)

b(!)

"
(b(!)� 
2)

�2

M
+ 
2�2(�)(1� o(1))

�
1

M

� 2��4
��1

�2

#
if � 2 (2 ; 3 )

where a(!) = 1
(1��ei!�
)(1��e�i!�
) ,b(!) = (1 � �ei!)(1 � �e�i!);.�1(�) =

(��2)2
(��1)(��3) and

�2(�) =
(��2)2

(��1)(3��) .

Proof: The proof of the probability statement on
�
I � �(GPL)

��1
is exactly the same

as in the proof of Proposition 2. To show the statement on S(!;�(GPL)); start by letting

� = 1� �e�i!. By same argument as in Proposition 2. one can always decompose

[(1� �ei!)I � �]�1 = [�I � 
A(G)D]�1 =
�
�I � 
E(A(G))D � 
[A(G)D � E(A(G))D]

	�1
Where, again, D is a diagonal matrix with a typical element Dkk =

1
dink

and D is a

diagonal matrix with a typical element Dkk =
1

E(dink )
. Now let

�I � 
E(A(G))D � C�

�
[A(G)D � E(A(G))D] � U

and apply Lemma A1 to get:

[�I � 
A(G)D]�1 = C�1� � C�1� U [I + C�1� U ]�1C�1�

Solve C�1� through the Barttlet inverse formula

C�1� = ��1I +
��1
�10��1

1� 
��110�

= ��1
�
I +

��1
�10

1� 
��110�

�
= ��1

�
I +


�10

�� 
10�

�
= ��1

�
I +


�10

�� 


�
For [I + C�1� U ]�1 substitute in C�1� to get

[I + C�1� U ]�1 =

�
I + ��1

�
I +




�� 

�10
�
U

��1
=

�
I + ��1U +




�� 

�10U

��1
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where again �10U is a M �M matrix of zeros. Thus:

[I + C�1� U ]�1 = I + ��1U

Collecting results

[�I � 
A(G)D]�1 = C�1� � C�1� U [I + C�1� U ]�1C�1�

= ��1
�
I +




�� 

�10
�
� ��2

�
I +




�� 

�10
�
U [I + ��1U ]�1

�
I +




�� 

�10
�

= ��1
�
I +




�� 

�10
�
� ��2U [I + ��1U ]�1

�
I +




�� 

�10
�

where the last line uses the fact that �10U is a M �M matrix of zeros.

Again de�ning � de�ning as

��
[A(G)D � E(A(G)D)][I � 
[A(G)D � E(A(G)D)]]�1
�
I +




1� 

�10
�

I can rewrite the expression above as

[�I � 
A(G)D]�1 = ��1
�
I +




�� 

�10
�
+ ��2�

Also, by the exact same argument as in the proof of Proposition 2, the column sums of

� have to be zero for any realization of A(G):

Now using the formula for the aggregate spectrum I get:

S(!;�(GPL)) =
�2

2�

1

M2
10[(1� �ei!)I � �]�10[(1� �ei!)I � �]�11

=
�2

2�

1

M2
10
�
��1

�
I +




�� 

�10
�
+ ��2�

�0 �
��1

�
I +




�� 

�10
�
+ ��2�

�
1

=
�2

2�

�0�1��1

M2

26666664
10
h
I + 


��
�1
0
i0 h

I + 

��
�1

0
i
1

+10��10�0
h
I + 


��
�1
0
i
1

+10
h
I + 


��
�1
0
i0
��1�1

+10�0�1��1�0�1

37777775
Now, term by term, in the expression in square brackets. First,

10
�
I +




�� 

�10
�0 �

I +



�� 

�10
�
1 = 10

�
I +




�0 � 

1�0 +




�� 

�10 +


2

(�� 
)(�0 � 
)
1�0�10

�
1

= M +M



�0 � 


MP
i=1

�i +M



�� 


MP
i=1

�i +

+

2

(�� 
)(�0 � 
)
M2

MP
i=1

�2i
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where �0 is the complex conjugate of � and is given by 1� �e�i!:

Second,

10��10�0
�
I +




�� 

�10
�
1 = ��1010�01+��10




�� 

10�0�101

= ��10



�� 

M10�0�

= ��10



�� 

M
P
j

P
i

�ij�i

Where �01 is a M � 1 vector of zeros (since the columns of � sum to zero), so the �rst

term disappears.

Third, and applying same reasoning,

10
�
I +




�� 

�10
�0
��1�1= 1 0��1�1+��110




�0 � 

1�0�1

= ��1



�0 � 

M�0�1

= ��1



�0 � 

M
P
j

P
i

�ij�i

Finally,

10�0�1��1�0�1 =�0�1��1
P
i

 P
j

�ij

!2
Collecting results:

S(!;�(GPL)) =
�2

2�

�0�1��1

M2

2664 M +M 

�0�
 +M 


��
 +

2

(��
)(�0�
)M
2
MP
i=1

�2i

+
�
��10 


��
 + ��1 

�0�


�
M
P
j

P
i �ij�i + �0�1��1

P
i

�P
j �ij

�2
3775

=
�2

2�
�0�1��1

2664
�0��
2

(��
)(�0�
)
1
M
+ 
2

(��
)(�0�
)

MP
i=1

�2i+�
2
�(��10+��1)
2
(��
)(�0�
)

�
1
M

P
j

P
i �ij�i +

1
M2�

0�1��1
P
i

�P
j �ij

�2
3775

=
�2

2�

�0�1��1

(�� 
)(�0 � 
)

2664 [�
0�� 
2] 1

M
+ 
2

MP
i=1

�2i +
�
2
 � (��10 + ��1)
2

�
1
M

P
j

P
i �ij�i

+ 1
M2�

0�1��1(�� 
)(�0 � 
)
P
i

�P
j �ij

�2
3775

To establish the lower bound I follow the same strategy as in the proof of Proposition 2.

Again the situation I am interested in ruling out is one where 1
M

P
j

P
i �ij�i is negative and

decays at a slower rate than
MP
i=1

�2i . To see that this is not the case, start by grouping the
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last three terms in the expression above thus:

MP
i=1

24
2�2i + �2
 � (��10 + ��1)
2
� 1
M

P
j

�ij�i +
1

M2
�0�1��1(�� 
)(�0 � 
)

 P
j

�ij

!235
and notice this is simply the i sum of the product of conjugate pairs indexed by i:

MP
i=1

"

�i +

1

M
��1(�� 
)

P
j

�ij

#"

�i +

1

M
��10(�0 � 
)

P
j

�ij

#

Now we know that the product of conjugate pairs is always real and nonnegative. Hence

it must be the case for any M; and each i


2�2i +
1

M2
�0�1��1(�� 
)(�0 � 
)

 P
j

�ij

!2
� �

�
2
 � (��10 + ��1)
2

� 1
M

P
j

�ij�i

Again, notice that for some i;
P

j �ij > 0 -by virtue of the zero column statement on �-

in which case the inequality will be strict. Thus summing over i:

MP
i=1


2�2i +
1

M2
�0�1��1(�� 
)(�0 � 
)

MP
i=1

 P
j

�ij

!2
> �

�
2
 � (��10 + ��1)
2

� 1
M

MP
i=1

P
j

�ij�i

which again implies that the term on the RHS of the inequality cannot decay at a slower

rate than LHS. By the same arguments as in the proof of Proposition 2, the LHS is either

(1 + o(1))
MP
i=1


2�2i or, a slower decaying, (1 + o(1)) 1
M2�

0�1��1(� � 
)(�0 � 
)
MP
i=1

�P
j �ij

�2
and thus necessarily

MP
i=1

24
2�2i + �2
 � (��10 + ��1)
2
� 1
M

P
j

�ij�i +
1

M2
�0�1��1(�� 
)(�0 � 
)

 P
j

�ij

!235
> (1� o(1))

MP
i=1


2�2i

Using this in the expression for S(!;�(GPL)) it has to be the case that for any M and

any frequency !

S(!;�(GPL)) >
1

2�

�0�1��1

(�� 
)(�0 � 
)

�
(�0�� 
2)

1

M
+ (1� o(1))

MP
i=1


2�2i

�

Substituting in for � = 1��e�i! and recalling the expression for
MP
i=1

�2i in Proposition 2,

yields:
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S(!;�(GPL)) >
1

2�

a(!)

b(!)

�
(b(!)� 
2)

�2

M
+ 
2�1(�)(1� o(1))

�2

M

�
if � > 3

and

S(!;�(GPL)) >
1

2�

a(!)

b(!)

"
(b(!)� 
2)

�2

M
+ 
2�2(�)(1� o(1))

�
1

M

� 2��4
��1

�2

#
if � 2 (2; 3)

where a(!) = 1
(1��ei!�
)(1��e�i!�
) ,b(!) = (1 � �ei!)(1 � �e�i!);.�1(�) =

(��2)2
(��1)(��3) and

�2(�) =
(��2)2

(��1)(3��) as claimed �
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